4.7 Article

A multi-fidelity data-driven model for highly accurate and computationally efficient modeling of short fiber composites

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 246, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2023.110359

Keywords

Transfer learning; Short fiber composites; Multi-fidelity data; Recurrent neural networks; Elasto-plastic behavior

Ask authors/readers for more resources

The aim of this study is to develop physics-based models and establish a structure-property relationship for short fiber composites. High-fidelity full-field simulations are computationally expensive and time-consuming, so the use of artificial neural networks and transfer learning technique is proposed to solve this issue and improve modeling accuracy and efficiency.
To develop physics-based models and establish a structure-property relationship for short fiber composites, there are a wide range of micro-structural properties to be considered. To achieve a high accuracy, high-fidelity full-field simulations are required. These simulations are computationally very expensive, and any single analysis could potentially take days to finish. A solution for this issue is to develop surrogate models using artificial neural networks. However, generating a high-fidelity data set requires a huge amount of time. To solve this problem, we used transfer learning technique, a limited amount of high-fidelity full-field simulations, together with a previously developed recurrent neural network model trained on low-fidelity mean-field data. The new RNN model has a very high accuracy (in comparison with full-field simulations) and is remarkably efficient. This model can be used not only for highly efficient modeling purposes, but also for designing new short fiber composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available