4.6 Article

Predicting the pair correlation functions of silicate and borosilicate glasses using machine learning

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume -, Issue -, Pages -

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3cp05136f

Keywords

-

Ask authors/readers for more resources

We developed a machine learning model to predict the atom pair correlation functions of a class of glassy materials, which can accurately predict the correlation functions for unknown glasses.
Glasses offer a broad range of tunable thermophysical properties that are linked to their compositions. However, it is challenging to establish a universal composition-property relationship of glasses due to their enormous compositions and chemical space. Here, we address this problem and develop a metamodel of the composition-atomistic structure relationship of a class of glassy materials via a machine learning (ML) approach. Within this ML framework, an unsupervised deep learning technique, viz., a convolutional neural network (CNN) autoencoder, and a regression algorithm, viz. random forest (RF), are integrated into a fully automated pipeline to predict the spatial distribution of atoms in a glass. The RF regression model predicts the pair correlation function of a glass in a latent space. Subsequently, the decoder of the CNN converts the latent space representation to the actual pair correlation function of the given glass. The atomistic structures of silicate (SiO2) and sodium borosilicate (NBS) based glasses with varying compositions and dopants are collected from molecular dynamics (MD) simulations to establish and validate this ML pipeline. The model is found to predict the atom pair correlation functions for many unknown glasses very accurately. This method is very generic and can accelerate the design, discovery, and fundamental understanding of the composition-atomistic structure relationship of glasses and other materials. We report a machine learning method for predicting the atom pair correlation functions of a class of glassy materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available