4.7 Article

ANDROMEDE - A software platform for optical surface velocity measurements

Journal

ENVIRONMENTAL MODELLING & SOFTWARE
Volume 171, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envsoft.2023.105883

Keywords

Surface velocimetry; Optical measurement; UAV; River discharge; Currentology

Ask authors/readers for more resources

Methods and algorithms for measuring stream surface velocities have been continuously developed over the past five years to adapt to specific flow typologies. The free software ANDROMEDE allows easy use and comparison of these methods with image processing capabilities designed for measurements in natural environments and with unmanned aerial vehicles. The validation of the integrated algorithms is presented on three case studies that represent the targeted applications: the study of currents for eco-hydraulics, the measurement of low water flows and the diagnosis of hydraulic structures. The field measurements are in very good agreement with the optical measurements and demonstrate the usefulness of the tool for rapid flow diagnosis for all the intended applications.
Methods and algorithms for measuring stream surface velocities have been continuously developed over the past five years to adapt to specific flow typologies. The free software ANDROMEDE allows easy use and comparison of these methods with image processing capabilities designed for measurements in natural environments and with unmanned aerial vehicles. Conventional particle tracking velocimetry, optical flow and particle image velocimetry algorithms, as well as filtering and statistical analysis methods, are available on a single platform. The code is written in Python, exploits available Python libraries, and allows accessible open-source code development. The validation of the integrated algorithms is presented on three case studies that represent the targeted applications: the study of currents for eco-hydraulics, the measurement of low water flows and the diagnosis of hydraulic structures. The field measurements are in very good agreement with the optical measurements and demonstrate the usefulness of the tool for rapid flow diagnosis for all the intended applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available