4.6 Article

Chemical-physical behavior of Hydroxyapatite: A modeling approach

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2023.106229

Keywords

Hydroxyapatite; Biocompatibility; Biomaterials; Computational studies; Simulation; X-ray diffraction

Ask authors/readers for more resources

Hydroxyapatite, a biocompatible and bioactive ceramic material, has been widely studied in fields such as orthopedics and plastic surgery. The use of computational tools, especially density functional theory, has become increasingly important in research. In this study, Hydroxyapatite was synthesized using the double decomposition method and quantum mechanical computations were performed using density functional theory. The experimental and computational results confirmed the successful synthesis of Hydroxyapatite and showed good agreement in spectroscopic characterizations.
Hydroxyapatite (HAp) is a ceramic composed of calcium phosphate, frequently employed as a bone substitute material due to its biocompatibility and bioactivity. Over the past century, there has been substantial attention in fields such as orthopedics and plastic surgery. Remarkably, synthetic HAp exhibits properties akin to those found in natural bone and teeth. Computational theoretical chemistry focuses on numerically computing molecular electronic structures and interactions. As chemistry education evolves, it's imperative to acknowledge the increasing significance of computational tools in research. Density Functional Theory (DFT) stands out as the most widely adopted method in contemporary computational chemistry. In this study, we synthesized Hydroxyapatite (HAp) via the double decomposition method using synthetic sources. The synthesized materials underwent thorough characterization, including X-ray Diffraction (XRD), UV-visible spectroscopy, and Fourier Transform Infrared (FTIR) spectroscopy under various conditions. Additionally, we performed quantum mechanical computations on the HAp molecule using density functional theory. Our results were then compared with experimental data. Our experimental findings highlight the successful synthesis of HAp, particularly under specific temperature conditions. Moreover, the quantum chemistry calculations exhibited excellent agreement with the experimental results, especially in terms of spectroscopic characterizations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available