4.7 Article

Alteration of carbon and nitrogen allocation in winter wheat under elevated ozone

Journal

PLANT SCIENCE
Volume 338, Issue -, Pages -

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2023.111924

Keywords

Air pollution; Ozone; Cereals; Nitrogen allocation; Grain quality

Ask authors/readers for more resources

Tropospheric ozone has significant effects on the remobilization and allocation efficiency of aboveground biomass and nutrients in cereal crops. Long-term ozone exposure increases straw C:N ratio and affects grain C:N ratio. Grain N concentrations increase significantly under ozone stress, but N yield declines due to grain yield losses. Various indicators of N use efficiency are reduced, indicating reduced N absorption from soil and allocation from vegetative to reproductive organs. Straw C:N ratio is not suitable for predicting wheat productivity. Nitrogen harvest index (NHI) is not affected by ozone stress, but the relationship between harvest index (HI) and NHI is changed by elevated ozone concentration.
Tropospheric ozone accelerates senescence and shortens grain filling, consequently affecting the remobilization and allocation efficiency of aboveground biomass and nutrients into grains in cereal crops. This study investigated carbon (C) and nitrogen (N) concentrations repeatedly in shoot biomass during the growth period and in grain after the harvest in eighteen wheat genotypes under control and ozone treatments in open-top chambers. Season-long ozone fumigation was conducted at an average ozone concentration of 70 ppb with three additional acute ozone episodes of around 150 ppb. Although there were no significant differences in straw C and N concentrations between the two treatments, the straw C:N ratio was significantly increased after long-term ozone fumigation, and the grain C:N ratio decreased under elevated ozone without significance. Grain N concentrations increased significantly under ozone stress, whereas N yield declined significantly due to grain yield losses induced by ozone. Moreover, different indicators of N use efficiency were significantly reduced with the exception of N utilization efficiency (NUtE), indicating that elevated ozone exposure reduced the N absorption from soil and allocation from vegetative to reproductive organs. The linear regression between straw C:N ratio and productivity indicated that straw C:N was not a suitable trait for predicting wheat productivity due to the low coefficient of determination (R2). Nitrogen harvest index (NHI) was not significantly affected by ozone stress among all genotypes. However, elevated ozone concentration changed the relationship between harvest index (HI) and NHI, and the reduced regression slope between them indicated that ozone exposure significantly affected the relationship of N and biomass allocation into wheat grains. The cultivar Jenga showed optimal ozone tolerance due to less yield reduction and higher NUE after ozone exposure. The genotypes with higher nutrient use efficiencies are promising to cope with ozone-induced changes in nitrogen partitioning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available