4.7 Article

Inhomogeneity of a rotating quark-gluon plasma from holography

Journal

PHYSICS LETTERS B
Volume 848, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.physletb.2023.138330

Keywords

-

Ask authors/readers for more resources

This study investigates the influence of rotation on the transition temperature of strongly interacting matter produced in non-central heavy ion collisions. By using a holographic description of an AdS black hole, the authors extend the analysis to the more realistic case where the matter spreads over a region around the rotational axis. The results show the coexistence of confined and deconfined phases and are consistent with the concept of local temperature in rotating frames developed by Tolman and Ehrenfest.
Rotation affects the transition temperature between confined (hadronic) and deconfined (quark-gluon plasma) phases of the strongly interacting matter produced in non-central heavy ion collisions. A holographic description of this effect was presented recently, considering an AdS black hole with cylindrical symmetry in rotation. Here we extend this approach in order to analyse the more realistic case of strongly interacting matter that, rather than living in a cylindrical shell, spreads over a region around the rotational axis. In this case, the confined and deconfined phases may coexist. The holographic description of the plasma behaviour under rotation is shown to be consistent with the concept of local temperature for rotating frames developed by Tolman and Ehrenfest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available