4.8 Article

Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane

Journal

WATER RESEARCH
Volume 248, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120897

Keywords

Waste activated sludge; Bioenergy; Solid -liquid interfacial interaction; Microbial community; Metabolic pathway

Ask authors/readers for more resources

This study investigates the effect of cation exchange resin (CER) on the sequential recovery of hydrogen and methane from anaerobic digestion (AD) and the corresponding mechanisms. The results show that CER can simultaneously enhance the production of hydrogen and methane by promoting the solubilisation, hydrolysis, and acidification of organic matter. Additionally, CER facilitates effective contact between bacteria and organic particulates and reduces the energy barrier for mass transfer during methane production. The study also reveals changes in the microbial community structure and metagenomics during the AD process.
The recovery of renewable bioenergy from anaerobic digestion (AD) of sludge is a promising method to alleviate the energy problem. Although methane can be effectively recovered through sludge pretreatment by cation exchange resin (CER), the simultaneous enhancement of hydrogen and methane generation from AD using CER has not been extensively investigated. Herein, the effect of CER on the sequential recovery of hydrogen and methane and the corresponding mechanisms were investigated. When CER is introduced, the maximum increases for the hydrogen and methane production are 104.7 % and 35.3 %, respectively, confirming the sequential enhancement effects of CER on the hydrogen and methane production. Analyses of the variations in the main biochemical components with and without the effect of CER demonstrate that CER promotes sludge organic solubilisation, hydrolysis, and acidification in both hydrogen- and methane-production stages. Moreover, investigations of variations in the solid-liquid interfacial thermodynamics and removal rates of main multivalent metals of sludge reveal that the ion exchange reactions between the CER and sludge in the hydrogen-production stage provide the direct driving force of effective contact between bacteria and organic particulates. Additionally, the residual effect of the CER during methane production reduces the energy barrier for mass transfer and provides a driving force for this transfer. Further analyses of the microbial community structure and metagenomics indicate that CER directly drives the enrichment of hydrogen-producing bacteria (+ 15.1 %) and key genes encoding enzymes in the hydrogen-production stage. Moreover, CER indirectly induces the enrichment of methane-producing anaerobes (e.g. Methanosaeta: + 16.7 %, Methanosarcina: + 316.5 %); enhances the bioconversion of different substrates into methyl-coenzyme M; and promotes the metabolism pathway of acetoclastic process and CO2 reduction in the methane-production stage. This study can provide valuable insights for simultaneously enhancing the production of hydrogen and methane from AD through sequential recovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available