4.7 Article

Multi-scale analysis of the effects of hysteresis on the hydrothermal behaviour of bio-based materials: Application to hemp concrete

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 411, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2023.134107

Keywords

Hysteresis phenomenon; Hygrothermal behaviour; Hemp concrete; Energy performance; Building scale; Thermal fluxes

Ask authors/readers for more resources

This paper studied the effects of hysteresis on the hygrothermal behavior at the building scale. Through laboratory validation and numerical simulations, it was found that hysteresis has a significant impact on the relative humidity and total heat fluxes in buildings, while it does not have a noticeable effect on temperature variations.
Experimental measurements of sorption isotherms show a difference between the water contents in the adsorption phase and the desorption one. This is mainly due to the hysteresis phenomenon. Not considering this phenomenon in hygrothermal behaviour models impacts the reliability of the latter. In this paper, we have studied the effects of hysteresis on the hygrothermal behaviour at the building scale. For this purpose, a new implementation method of a hysteresis model was proposed and validated at the material and wall scales using a bi-climatic chamber which controlled the indoor and outdoor climate conditions. Then, the effect of the hys-teresis phenomenon at the building scale was evaluated following a COMSOL/TRNSYS co-simulation approach to consider the gains and losses in the hydric fluxes going through walls. The results showed significant differences in terms of the relative humidity of the living environment. However, no difference was noticed in the tem-perature variations. On the other hand, the total heat fluxes were also affected by the hysteresis phenomenon due to latent heat parts, that were driven by variations in relative humidity. The maximum gain and loss discrep-ancies (with and without hysteresis) in total heat fluxes of 1121 kJ/h and 1086 kJ/h, respectively, were obtained during the first week of February (winter period). The results also revealed that these discrepancies are sensitive to the number of persons in the living environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available