4.7 Article

A thermodynamic constitutive model for structured and destructured clays

Journal

COMPUTERS AND GEOTECHNICS
Volume 166, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2023.105969

Keywords

Structured clays; Destructure; Critical state; True triaxial; Thermodynamics

Ask authors/readers for more resources

A thermodynamic constitutive model for structured and destructured clays is proposed in this paper. The model includes state-dependent relations of hyperelasticity and plasticity without the concept of yielding surface. The proposed model captures the couplings between elasticity and plasticity and the effects of bonding structure.
A thermodynamic constitutive model for structured and destructured clays is proposed in this paper based on thermodynamic principles on the energy storages and dissipations. The model includes state-dependent relations of hyperelasticity and plasticity without the concept of yielding surface. The proposed nonlinear hyperelasticity is dependent on the sates of soil stress, density, and structure and leads to the limit state surface that varies with the bonding structure from a curved surface for structured clays to a plane surface for destructured clays. The plastic and destructure laws are subjected to the second thermodynamic law and expressed in the elastic-strain space instead of the stress space, which naturally account for the couplings between elasticity and plasticity with the Lode-angle and structure effects. The model is well validated by the predictions of drained/undrained conventional and true triaxial shearing tests for both structured and destructured clays, which well capture the K0 effect, the non-coaxiality between stress and strain, and the structure/destructure effects on the elasticstiffness and strain-softening of clays. For both structured and destructured clays, the critical-state elastic strain is unique under a fixed Lode angle and hence the critical state only relies on the critical-state density and the direction of shearing path.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available