4.6 Article

CNTs supported NiCo2O4 nanostructures as advanced composite for high performance supercapacitors

Journal

DIAMOND AND RELATED MATERIALS
Volume 141, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2023.110660

Keywords

Carbon nanotubes; Composite; Electrochemical properties

Ask authors/readers for more resources

This study examines the latest advancements in carbon nanotube (CNT) supercapacitors and related composites, aiming to identify strategies for enhancing their performance. The researchers used ultrasonication aided hydrothermal technique to synthesize a composite made of nitrogen doped carbon nanotubes and porous NiCo2O4 nanomaterial. The composite electrode exhibited excellent cycling stability and a rising specific capacitance, making it appealing for high-performance supercapacitor applications.
This study examines the most recent advancements in carbon nanotube (CNT) supercapacitors and related composites. The goal is to provide a thorough selfless of the benefits and drawbacks of energy storage materials connected to carbon nanotubes and to identify strategies for enhancing supercapacitor performance. Ultrasonication aided hydrothermal technique was used to decorate a composite made of nitrogen doped carbon nanotubes and porous NiCo2O4 nanomaterial. For use in supercapacitor applications, the electrochemical characteristics of the produced composite electrode materials are examined. The synthesized composite electrode exhibits cycling stability, preserving about 98.5 % of the initial capacitance after 5000 cycles, and a rising specific capacitance of 1191 F g-1 at the current density of 1 A g-1. Due to the integration of N-MWCNT, their conductive nature, and active surface area, specific capacitances have enhanced. Composites would surely be appealing for high performance supercapacitor application because of their exceptional capacitive performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available