4.5 Article

A closer look at calcium-induced interactions between phosphatidylserine-(PS) doped liposomes and the structural effects caused by inclusion of gangliosides or polyethylene glycol- (PEG) modified lipids

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Volume 1866, Issue 2, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.bbamem.2023.184253

Keywords

Calcium ions; Liposome-liposome fusion; FRET; Cryo-EM; PEGylated lipids; Gangliosides; Ion correlation

Ask authors/readers for more resources

This study investigates the effects of polyethylene glycol-(PEG) modified lipids and gangliosides on the Ca2+ induced interaction between liposomes composed of palmitoyl-oleoyl phosphatidylethanolamine (POPE) and palmitoyl-oleoyl phosphatidylserine (POPS) at physiological ionic strength. The results show that naked liposomes tend to adhere, rupture, and collapse on each other's surfaces upon addition of Ca2+, eventually resulting in the formation of large multilamellar aggregates and bilayer sheets. However, the presence of gangliosides or PEGylated lipids leads to the formation of small, long-lived bilayer fragments/disks. PEGylated lipids seem to be more effective than gangliosides at stabilizing these structures. The study suggests that direct liposome-liposome fusion is not the dominating process triggered by Ca2+ in the systems studied.
The effects of polyethylene glycol-(PEG) modified lipids and gangliosides on the Ca2+ induced interaction between liposomes composed of palmitoyl-oleoyl phosphatidylethanolamine (POPE) and palmitoyl-oleoyl phosphatidylserine (POPS) was investigated at physiological ionic strength. Fo center dot rster resonance energy transfer (FRET) studies complemented with dynamic light scattering (DLS) and cryo-transmission electron microscopy (Cryo-EM) show that naked liposomes tend to adhere, rupture, and collapse on each other's surfaces upon addition of Ca2+, eventually resulting in the formation of large multilamellar aggregates and bilayer sheets. Noteworthy, the presence of gangliosides or PEGylated lipids does not prevent the adhesion-rupture process, but leads to the formation of small, long-lived bilayer fragments/disks. PEGylated lipids seem to be more effective than gangliosides at stabilizing these structures. Attractive interactions arising from ion correlation are proposed to be a driving force for the liposome-liposome adhesion and rupture processes. The results suggest that, in contrast with the conclusions drawn from previous solely FRET-based studies, direct liposome-liposome fusion is not the dominating process triggered by Ca2+ in the systems studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available