4.4 Article

Antibacterial activity of metal-phenanthroline complexes against multidrug-resistant Irish clinical isolates: a whole genome sequencing approach

Journal

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
Volume 28, Issue 2, Pages 153-171

Publisher

SPRINGER
DOI: 10.1007/s00775-022-01979-8

Keywords

Metal complexes; Antimicrobial resistance; Pseudomonas aeruginosa; 1; 10-Phenanthroline; Whole genome sequencing

Ask authors/readers for more resources

Antimicrobial resistance (AMR) is a major global health challenge, and there is an urgent need to develop novel therapeutic agents to overcome it. Metal complexes incorporating 1,10-phenanthroline and various dicarboxylate ligands were found to have high antibacterial activity against AMR pathogens. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid were the most effective, and their activity varied depending on the metal center. Whole-genome sequencing of Pseudomonas aeruginosa exposed to these metal complexes revealed mutations in genes involved in cellular respiration, polyamine biosynthesis, and virulence mechanisms.
Antimicrobial resistance (AMR) is one of the serious global health challenges of our time. There is now an urgent need to develop novel therapeutic agents that can overcome AMR, preferably through alternative mechanistic pathways from conventional treatments. The antibacterial activity of metal complexes (metal = Cu(II), Mn(II), and Ag(I)) incorporating 1,10-phenanthroline (phen) and various dianionic dicarboxylate ligands, along with their simple metal salt and dicarboxylic acid precursors, against common AMR pathogens were investigated. Overall, the highest level of antibacterial activity was evident in compounds that incorporate the phen ligand compared to the activities of their simple salt and dicarboxylic acid precursors. The chelates incorporating both phen and the dianion of 3,6,9-trioxaundecanedioic acid (tdda) were the most effective, and the activity varied depending on the metal centre. Whole-genome sequencing (WGS) was carried out on the reference Pseudomonas aeruginosa strain, PAO1. This strain was exposed to sub-lethal doses of lead metal-tdda-phen complexes to form mutants with induced resistance properties with the aim of elucidating their mechanism of action. Various mutations were detected in the mutant P. aeruginosa genome, causing amino acid changes to proteins involved in cellular respiration, the polyamine biosynthetic pathway, and virulence mechanisms. This study provides insights into acquired resistance mechanisms of pathogenic organisms exposed to Cu(II), Mn(II), and Ag(I) complexes incorporating phen with tdda and warrants further development of these potential complexes as alternative clinical therapeutic drugs to treat AMR infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available