4.7 Article

Next-Generation Sequencing in the Assessment of the Transcriptomic Landscape of DNA Damage Repair Genes in Abdominal Aortic Aneurysm, Chronic Venous Disease and Lower Extremity Artery Disease

Journal

Publisher

MDPI
DOI: 10.3390/ijms24010551

Keywords

DNA repair; lower extremity arterial disease; chronic venous disease; abdominal aortic aneurysm; gene expression; biomarker; next-generation sequencing

Ask authors/readers for more resources

Vascular diseases are leading causes of death and morbidity, and there is a need for new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA revealed significant differences in the expression of DNA repair-related genes in abdominal aortic aneurysm, chronic venous disease, and lower extremity artery disease, which could be utilized for the design of new biomarkers or therapies associated with these diseases.
Vascular diseases are one of the most common causes of death and morbidity. Lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD) belong to this group of conditions and exhibit various presentations and courses; thus, there is an urgent need for revealing new biomarkers for monitoring and potential treatment. Next-generation sequencing of mRNA allows rapid and detailed transcriptome analysis, allowing us to pinpoint the most pronounced differences between the mRNA expression profiles of vascular disease patients. Comparison of expression data of 519 DNA-repair-related genes obtained from mRNA next-generation sequencing revealed significant transcriptomic marks characterizing AAA, CVD and LEAD. Statistical, gene set enrichment analysis (GSEA), gene ontology (GO) and literature analyses were applied and highlighted many DNA repair and accompanying processes, such as cohesin functions, oxidative stress, homologous recombination, ubiquitin turnover, chromatin remodelling and DNA double-strand break repair. Surprisingly, obtained data suggest the contribution of genes engaged in the regulatory function of DNA repair as a key component that could be used to distinguish between analyzed conditions. DNA repair-related genes depicted in the presented study as dysregulated in AAA, CVD and LEAD could be utilized in the design of new biomarkers or therapies associated with these diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available