4.7 Article

Constructing α-Fe2O3/g-C3N4/SiO2 S-scheme-based heterostructure for photo-Fenton like degradation of rhodamine B dye in aqueous solution

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-022-24940-3

Keywords

alpha-Fe2O3/g-C3N4/SiO2 photocatalysts; Photo-Fenton process; RhB degradation; DFT studies. S-Scheme photocatalytic mechanism

Ask authors/readers for more resources

This study successfully synthesized graphitic carbon nitride and magnetically recoverable alpha-Fe2O3/g-C3N4/SiO2 photo-Fenton catalysts using thermal polycondensation and in situ-simple precursor drying-calcination process. The catalyst exhibited efficient degradation of model synthetic rhodamine B (RhB) dye under simulated visible light irradiation. The degradation mechanism involved the generation of hydroxyl radicals and the complete mineralization of the dye.
This work successfully fabricated graphitic carbon nitride and magnetically recoverable alpha-Fe2O3/g-C3N4/SiO2 photo-Fenton catalysts using thermal polycondensation and in situ-simple precursor drying-calcination process, respectively, was examined for model synthetic rhodamine B (RhB) dye in the presence of H2O2 and acidic pH under simulated visible light irradiation. An aqueous suspension of the reaction mixture of dye-containing wastewater was fully degraded and reached 97% of photo-Fenton degradation efficiency within 120 min followed by the production of hydroxyl radical ((OH)-O-center dot ). The dominant hydroxyl radical position generated surface charge, electrostatic potential distribution, and average local ionization potential, which contributed to the complete mineralization of RhB dye, according to the density functional theory (DFT) calculations. HPLC and GCMS experiments were performed to examine the degradation fragments of RhB and draw a plausible mechanistic pathway which showed that RhB degradation generated a series of N-deethylated products, followed by a one-time ring-opening, which indicated that photosensitization induced a photocatalysis reaction mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available