4.6 Review

Evolving characterization of the human hyperdirect pathway

Journal

BRAIN STRUCTURE & FUNCTION
Volume 228, Issue 2, Pages 353-365

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00429-023-02610-5

Keywords

Subthalamic nucleus; Hyperdirect pathway; Cortex; Deep brain stimulation; Basal ganglia; Parkinson's disease

Ask authors/readers for more resources

The hyperdirect pathway (HDP) is an important glutamatergic input to the subthalamic nucleus (STN), allowing modulation of basal ganglia activity by the motor and prefrontal cerebral cortex. Activation of the motor HDP is crucial for therapeutic deep brain stimulation (DBS), while unintended activation of the prefrontal HDP may cause cognitive side effects. Generative modeling methods show promise in understanding the complexities of the HDP.
The hyperdirect pathway (HDP) represents the main glutamatergic input to the subthalamic nucleus (STN), through which the motor and prefrontal cerebral cortex can modulate basal ganglia activity. Further, direct activation of the motor HDP is thought to be an important component of therapeutic deep brain stimulation (DBS), mediating the disruption of pathological oscillations. Alternatively, unintended recruitment of the prefrontal HDP may partly explain some cognitive side effects of DBS therapy. Previous work describing the HDP has focused on non-human primate (NHP) histological pathway tracings, diffusion-weighted MRI analysis of human white matter, and electrophysiology studies involving paired cortical recordings with DBS. However, none of these approaches alone yields a complete understanding of the complexities of the HDP. As such, we propose that generative modeling methods hold promise to bridge anatomy and physiology results, from both NHPs and humans, into a more detailed representation of the human HDP. Nonetheless, numerous features of the HDP remain to be experimentally described before model-based methods can simulate corticosubthalamic activity with a high degree of scientific detail. Therefore, the goals of this review are to examine the experimental evidence for HDP projections from across the primate neocortex and discuss new data which are required to improve the utility of anatomical and biophysical models of the human corticosubthalamic system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available