4.7 Article

Towards Highly Efficient Nitrogen Dioxide Gas Sensors in Humid and Wet Environments Using Triggerable-Polymer Metasurfaces

Journal

POLYMERS
Volume 15, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/polym15030545

Keywords

metasurfaces; gas sensors; frequency-selective surface; optical sensing

Ask authors/readers for more resources

This study presents simulations on metasurface-based NO2 gas sensors operating in the telecom C band and exhibiting strong variations in reflection coefficient after assimilation of NO2 molecules. A polymer-based unit architecture, with hydrophyllic and NO2-responsive layers, allows for highly-sensitive response in the desired spectral window, overcoming limitations of absorption-based and electrical signal-based sensors. This proposed sensor architecture shows great potential for both biological and atmospheric NO2 gas-sensing applications.
We report simulations on a highly-sensitive class of metasurface-based nitrogen dioxide (NO2) gas sensors, operating in the telecom C band around the 1550 nm line and exhibiting strong variations in terms of the reflection coefficient after assimilation of NO2 molecules. The unit architecture employs a polymer-based (polyvinylidene fluoride-PVDF or polyimide-PI) motif of either half-rings, rods, or disks having selected sizes and orientations, deposited on a gold substrate. On top of this, we add a layer of hydrophyllic polymer (POEGMA) functionalized with a NO2-responsive monomer (PAPUEMA), which is able to adsorb water molecules only in the presence of NO2 molecules. In this process, the POEGMA raises its hidrophyllicity, while not triggering a phase change in the bulk material, which, in turn, modifies its electrical properties. Contrary to absorption-based gas detection and electrical signal-based sensors, which experience considerable limitations in humid or wet environments, our method stands out by simple exploitation of the basic material properties of the functionalized polymer. The results show that NO2-triggered water molecule adsorption from humid and wet environments can be used in conjunction with our metasurface architecture in order to provide a highly-sensitive response in the desired spectral window. Additionally, instead of measuring the absorption spectrum of the NO2 gas, in which humidity counts as a parasitic effect due to spectral overlap, this method allows tuning to a desired wavelength at which the water molecules are transparent, by scaling the geometry and thicknesses of the layers to respond to a desired wavelength. All these advantages make our proposed sensor architecture an extremely-viable candidate for both biological and atmospheric NO2 gas-sensing applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available