4.6 Article

Probing many-body localization by excited-state variational quantum eigensolver

Journal

PHYSICAL REVIEW B
Volume 107, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.024204

Keywords

-

Ask authors/readers for more resources

This study proposes a systematic approach to probe MBL phases using the excited-state variational quantum eigensolver (VQE) and demonstrates convincing results of MBL on a quantum hardware, paving a promising way for future simulations of nonequilibrium systems beyond classical computations in the noisy intermediate-scale quantum (NISQ) era.
Nonequilibrium physics including many-body localization (MBL) has attracted increasing attentions, but theoretical approaches of reliably studying nonequilibrium properties remain quite limited. In this Letter, we propose a systematic approach to probe MBL phases via the excited-state variational quantum eigensolver (VQE) and demonstrate convincing results of MBL on a quantum hardware, which we believe paves a promising way for future simulations of nonequilibrium systems beyond the reach of classical computations in the noisy intermediate-scale quantum (NISQ) era. Moreover, the MBL probing protocol based on excited-state VQE is NISQ-friendly, as it can successfully differentiate the MBL phase from thermal phases with relatively shallow quantum circuits, and it is also robust against the effect of quantum noises.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available