4.7 Article

Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 23, Issue 2, Pages 1687-1703

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-23-1687-2023

Keywords

-

Ask authors/readers for more resources

Atmospheric rivers (ARs) play a significant role in extreme precipitation events in East Asia. The increase in AR frequency and associated precipitation in a warmer climate is found, with the most pronounced changes observed in southern China. Stratospheric aerosol intervention (SAI) can partially mitigate the increase in AR activity in the subtropical region, but may result in more pronounced increases in ARs and precipitation in the upper-midlatitude regions, particularly northeastern China.
Atmospheric rivers (ARs) are closely associated with historical extreme precipitation events over East Asia. The projected increase in such weather systems under global warming has been extensively discussed in previous studies, while the role of stratospheric aerosol, particularly for the implementation of stratospheric aerosol intervention (SAI), in such a change remains unknown. Based on an ensemble of the UK Earth System Model (UKESM1) simulations, here we investigate changes in the frequency of ARs and their associated mean and extreme precipitation under a range of climate forcing, including greenhouse gas emission scenarios of high (SSP5-8.5) and medium (SSP2-4.5) levels, the deployment of SAI geoengineering (G6sulfur), and solar dimming (G6solar). The result indicates a significant increase in AR frequency and AR-related precipitation over most of East Asia in a warmer climate, and the most pronounced changes are observed in southern China. Comparing G6solar and both the Shared Socioeconomic Pathway (SSP) scenarios, the G6sulfur simulations indicate that SAI is effective at partly ameliorating the increases in AR activity over the subtropical region; however, it may result in more pronounced increases in ARs and associated precipitation over the upper-midlatitude regions, particularly northeastern China. Such a response is associated with the further weakening of the subtropical westerly jet stream under SAI that favours the upper-midlatitude AR activity. This is driven by the decreased meridional gradient of thermal expansion in the mid-high troposphere associated with aerosol cooling across the tropical region, though SAI effectively ameliorates the widespread increase in thermal expansion under climate warming. Such a side effect of SAI over the populated region implies that caution must be taken when considering geoengineering approaches to mitigating hydrological risk under climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available