4.6 Article

Short- and Long-Term Memory Based on a Floating-Gate IGZO Synaptic Transistor

Journal

IEEE ACCESS
Volume 11, Issue -, Pages 20196-20201

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2023.3249479

Keywords

Transistors; Neuromorphics; Tunneling; Threshold voltage; Nonvolatile memory; Logic gates; Depression; Synaptic communication; Synapse device; neuromorphic system; IGZO; short-term memory; long-term memory; synaptic transistor

Ask authors/readers for more resources

In this paper, a synaptic transistor with a floating-gate (FG) node and an amorphous InGaZnO (IGZO) channel layer is proposed. The device emulates the neuroplasticity functions of both short-term memory (STM) and long-term memory (LTM) through the control of the amplitude and the number of input pulses. The STM occurs when the input amplitude is relatively small (< 9 V) by ion movement in the gate dielectrics, and the LTM occurs when the input amplitude is relatively large (> 10 V) by storing electrons in the FG. Increasing the number of input pulses allows for longer information storage. The FG IGZO synaptic transistor could be a promising device solution for brain-inspired computing systems.
Short- and long-term neuroplasticity behaviors are key mechanisms for various activities. In this paper, we propose a synaptic transistor with a floating-gate (FG) node and an amorphous InGaZnO (IGZO) channel layer. The proposed device emulates the neuroplasticity functions of both short-term memory (STM) and long-term memory (LTM) through the control of the amplitude and the number of input pulses. The STM operated by ion movement in the gate dielectrics occurs when the input amplitude is relatively small (< 9 V). The LTM operated through the storage of electrons in the FG occurs when the input amplitude is relatively large (> 10 V). In addition, as the number of input pulses increases, information is stored for a longer time. Our FG IGZO synaptic transistor could be a promising device solution for brain-inspired computing systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available