4.5 Article

Electrical Tree Image Segmentation Using Hybrid Multi Scale Line Tracking Algorithm

Journal

CMC-COMPUTERS MATERIALS & CONTINUA
Volume 75, Issue 1, Pages 741-760

Publisher

TECH SCIENCE PRESS
DOI: 10.32604/cmc.2023.036077

Keywords

Image segmentation; multi-scale line tracking; electrical tree; partial discharge; high-voltage cable

Ask authors/readers for more resources

Electrical trees are an aging mechanism in crosslinked polyethylene insulation of high-voltage cables, and the accurate segmentation of tree structures in 2D images is crucial for developing new insulation materials. This study proposes a new method based on the multi-scale line tracking algorithm for segmenting electrical tree images, achieving better performance compared to established techniques.
Electrical trees are an aging mechanism most associated with partial discharge (PD) activities in crosslinked polyethylene (XLPE) insulation of high-voltage (HV) cables. Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material. Two-dimensional (2D) optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods. However, since elec-trical trees can emerge in different shapes such as bush-type or branch-type, treeing images are complicated to segment due to manifestation of convoluted tree branches, leading to a high misclassification rate during segmentation. Therefore, this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm (MSLTA) by integrating batch processing method. The proposed method, h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy. The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation. The treeing images are then sampled and binarized in pre-processing. In the next phase, segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multi-ple instances of treeing duration. Finally, the comparative investigation has been conducted using standard performance assessment metrics, including accuracy, sensitivity, specificity, Dice coefficient and Matthew's correlation coefficient (MCC). Based on segmentation performance evaluation against several established segmentation methods, h-MSLTA achieved better results of 95.43% accuracy, 97.28% specificity, 69.43% sensitivity rate with 23.38% and 24.16% average improvement in Dice coefficient and MCC score respec-tively over the original algorithm. In addition, h-MSLTA produced accu-rate measurement results of global tree parameters of length and width in comparison with the ground truth image. These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available