4.7 Article

Use of conductive polymer-supported oxide-based photocatalysts for efficient VOCs & SVOCs removal in gas/liquid phase

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2022.108935

Keywords

Air purification; Conductive polymers; Metal oxide nanoparticles; Photocatalysis; Volatile organic compounds; Semi volatile; organic compounds

Ask authors/readers for more resources

Volatile and semi volatile organic compounds (VOCs and SVOCs) are serious environmental pollutants causing diseases worldwide. Photocatalytic technology using conductive polymers (CPs) such as polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh), along with inorganic oxide semiconductors, shows great potential in removing VOCs and SVOCs due to their multifunctional properties and high efficiency.
Volatile and semi volatile organic compounds (VOCs and SVOCs) are regarding as serious environmental pollutants owign to causing a lot of diseases around the world. The VOCs and SVOCs can be accumulated in both indoor and outdoor areas. Photocatalytic technology has been applied over the last decades in order to purify air and water under solar or artificial lights. To overcome the issues of classical TiO2 photocatalysis, the scientific community has done a lot of research on the engineering of photocatalytic materials with smart and multifunctional properties to fit with the large scale application. Condutive polymers (CPs), such as polyaniline (PANI), polypyrrole (PPy), and polythiophene (PTh), have proven to be an outstanding materials as compared to inorganic semiconductors towards the photocatalytic removal of VOCs and SVOCs. Such a class of photoactive materials including large solar absorption, excellent charges separation, effective redox potential, good conductivity, eco-friendly and so on. This review aims to discuss the recent progress on the development of CPs and their combination with inorganic oxide semiconductors for synergetic effects toward the photocatalytic oxidation VOCs & SVOCs. For the purpose of comparison, main routes to remove VOCs and SVOCs using existing technologies were discussed in the first section. Photocatalytic mechanistic pathways using pristine CPs and CPs@metal oxide composites were critically discussed. Future prospects with appropriate scientific recommendations/suggestions are provided at the end of the review in order to bridge the fundamental research in the field with real-world application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available