4.8 Review

Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 16, Issue 4, Pages 1384-1430

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ee00142c

Keywords

-

Ask authors/readers for more resources

Alkaline water electrolysis is a promising method to address the energy crisis, and membrane electrode assemblies (MEAs) play a crucial role in determining the performance and durability of this process. Therefore, developing high-performance and low-cost MEAs is essential for promoting large-scale applications of alkaline water electrolysis. In this review, we discuss the state-of-the-art MEAs, including electrocatalysts, ion conductive membranes, and gas/liquid diffusion layers, as well as the progress in their preparation technologies. We also highlight the complex relationship between the electrocatalyst and main components with the performance of alkaline water electrolysis, and discuss the current challenges and future perspectives on MEA development.
Alkaline water electrolysis for hydrogen production is a promising approach to address the severe energy crisis. Membrane electrode assemblies (MEAs) provide an important place for the electrochemical reaction and multiphase transfer, which directly determines the performance and durability of alkaline water electrolysis. Thus, developing high-performance and low-cost MEAs is the key to promote the large-scale applications of alkaline water electrolysis. Herein, based on the discussion of the fundamentals of alkaline water electrolysis, we review the state-of-the-art MEAs, including electrocatalysts, ion conductive membranes, and gas/liquid diffusion layers, as well as the progress in preparation technologies of MEAs. Especially, the overall design strategies of MEAs are discussed to promote high-performance alkaline water electrolysis, thus highlighting the complex relationship of the electrocatalyst and main components with the performance of alkaline water electrolysis. Finally, the current challenges and future perspectives on the development of MEAs are discussed. This review can provide a timely reference for future directions in MEAs' challenges and perspectives for alkaline water electrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available