4.6 Article

Self-healing bottlebrush polymer networks enabled via a side-chain interlocking design

Journal

MATERIALS HORIZONS
Volume 10, Issue 6, Pages 2128-2138

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3mh00274h

Keywords

-

Ask authors/readers for more resources

Exploring side-chain interlocking in bottlebrush polymers as a dynamic network for self-healing process, this study demonstrates that materials can achieve self-healing capability in harsh environments, and also act as damping materials to dissipate vibration energy.
Exploring novel healing mechanisms is a constant impetus for the development of self-healing materials. Herein, we find that side-chain interlocking of bottlebrush polymers can form a dynamic network and thereby serve as a driving force for the self-healing process of the materials. Molecular dynamics simulation indicates that the interlocking is formed by the interpenetration between the long side chains of adjacent molecules and stabilized by van der Waals interactions and molecular entanglements of side chains. The interlocking can be tailored by changing the length and density of the side chains through atom transfer radical polymerization. As a result, the optimized bottlebrush polymer shows a healing efficiency of up to 100%. Unlike chemical interactions, side-chain interlocking eliminates the introduction of specific chemical groups. Therefore, bottlebrush polymers can even self-heal under harsh aqueous conditions, including acid and alkali solutions. Moreover, the highly dynamic side-chain interlocking enables bottlebrush polymers to efficiently dissipate vibration energy, and thus they can be used as damping materials. Collectively, side-chain interlocking expands the scope of physical interactions in self-healing materials and hews out a versatile way for polymers to accomplish self-healing capability in various environments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available