4.7 Article

Neural Airport Ground Handling

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TITS.2023.3253552

Keywords

Airport ground handling; vehicle routing problem; attention model; reinforcement learning

Ask authors/readers for more resources

This study aims to improve the solution quality and computation efficiency for airport ground handling (AGH). It models AGH as a multiple-fleet vehicle routing problem (VRP) and proposes a neural method to construct routing solutions for sub-problems. Extensive experiments show that this method outperforms classic meta-heuristics and specialized methods for AGH.
Airport ground handling (AGH) offers necessary operations to flights during their turnarounds and is of great importance to the efficiency of airport management and the economics of aviation. Such a problem involves the interplay among the operations that leads to NP-hard problems with complex constraints. Hence, existing methods for AGH are usually designed with massive domain knowledge but still fail to yield high-quality solutions efficiently. In this paper, we aim to enhance the solution quality and computation efficiency for solving AGH. Particularly, we first model AGH as a multiple-fleet vehicle routing problem (VRP) with miscellaneous constraints including precedence, time windows, and capacity. Then we propose a construction framework that decomposes AGH into sub-problems (i.e., VRPs) in fleets and present a neural method to construct the routing solutions to these sub-problems. In specific, we resort to deep learning and parameterize the construction heuristic policy with an attention-based neural network trained with reinforcement learning, which is shared across all sub-problems. Extensive experiments demonstrate that our method significantly outperforms classic meta-heuristics, construction heuristics and the specialized methods for AGH. Besides, we empirically verify that our neural method generalizes well to instances with large numbers of flights or varying parameters, and can be readily adapted to solve real-time AGH with stochastic flight arrivals. Our code is publicly available at: https://github.com/RoyalSkye/AGH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available