4.5 Article

Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability

Journal

JOURNAL OF HEADACHE AND PAIN
Volume 24, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s10194-023-01551-y

Keywords

Migraine; EEG microstate; fMRI; Functional connection; Resting state; Brain network

Ask authors/readers for more resources

This study aims to investigate the brain spatio-temporal dynamics of resting-state networks and their correlations with clinical traits in migraine. The results show that the altered spatio-temporal dynamics exist in migraine patients and are associated with their clinical traits. These dynamics may serve as potential biomarkers for migraine and have the potential to change future clinical practice.
ObjectiveThe changes in resting-state functional networks and their correlations with clinical traits remain to be clarified in migraine. Here we aim to investigate the brain spatio-temporal dynamics of resting-state networks and their possible correlations with the clinical traits in migraine.MethodsTwenty Four migraine patients without aura and 26 healthy controls (HC) were enrolled. Each included subject underwent a resting-state EEG and echo planar imaging examination. The disability of migraine patients was evaluated by Migraine Disability Assessment (MIDAS). After data acquisition, EEG microstates (Ms) combining functional connectivity (FC) analysis based on Schafer 400-seven network atlas were performed. Then, the correlation between obtained parameters and clinical traits was investigated.ResultsCompared with HC group, the brain temporal dynamics depicted by microstates showed significantly increased activity in functional networks involving MsB and decreased activity in functional networks involving MsD; The spatial dynamics were featured by decreased intra-network FC within the executive control network( ECN) and inter-network FC between dorsal attention network (DAN) and ECN (P < 0.05); Moreover, correlation analysis showed that the MIDAS score was positively correlated with the coverage and duration of MsC, and negatively correlated with the occurrence of MsA; The FC within default mode network (DMN), and the inter-FC of ECN- visual network (VN), ECN- limbic network, VN-limbic network was negatively correlated with MIDAS. However, the FC of DMN-ECN was positively correlated with MIDAS; Furthermore, significant interactions between the temporal and spatial dynamics were also obtained.ConclusionsOur study confirmed the notion that altered spatio-temporal dynamics exist in migraine patients during resting-state. And the temporal dynamics, the spatial changes and the clinical traits such as migraine disability interact with each other. The spatio-temporal dynamics obtained from EEG microstate and fMRI FC analyses may be potential biomarkers for migraine and with a huge potential to change future clinical practice in migraine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available