4.6 Article

Possible restoration of particle-hole symmetry in the 5/2-quantized Hall state at small magnetic field

Journal

PHYSICAL REVIEW B
Volume 107, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.115137

Keywords

-

Ask authors/readers for more resources

Motivated by the unexpected observation of a quantized 5/2 thermal conductance, we have expanded the effective Hamiltonian of the 5/2-quantized Hall state to third order in the parameter controlling the Landau-level mixing. Exact diagonalizations of this Hamiltonian show that the difference between Pfaffian and anti-Pfaffian states disappears at around K = 0.4, suggesting a closer energy proximity at smaller magnetic field. Furthermore, the finite-size spectrum exhibits characteristics of a quantum phase transition, indicating the possibility of a phase with emergent particle-hole symmetry to explain the observed thermal conductance.
Motivated by the experimental observation of a quantized 5/2 thermal conductance at filling nu = 5/2, a result incompatible with both the Pfaffian and the anti-Pfaffian states, we have pushed the expansion of the effective Hamiltonian of the 5/2-quantized Hall state to third order in the parameter K = EC/h over bar wc oc 1/./B controlling the Landau-level mixing, where EC is the Coulomb energy and wc is the cyclotron frequency. Exact diagonalizations of this effective Hamiltonian show that the difference in overlap with the Pfaffian state and the anti-Pfaffian state induced at second order is reduced by third-order corrections and disappears around K = 0.4, suggesting that these states are much closer in energy at smaller magnetic field than previously anticipated. Furthermore, we show that in this range of K the finite-size spectrum is typical of a quantum phase transition, with a strong reduction of the energy gap and with level crossings between excited states. These results point to the possibility of a quantum phase transition at smaller magnetic field into a phase with an emergent particle-hole symmetry that would explain the measured 5/2 thermal conductance of the 5/2-quantized Hall state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available