4.8 Article

Electron transfer and surface activity of NiCoP-wrapped MXene: cathodic catalysts for the oxygen reduction reaction

Journal

NANOSCALE
Volume 15, Issue 16, Pages 7430-7437

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nr00192j

Keywords

-

Ask authors/readers for more resources

NiCoP constructed on a conductive substrate exhibits efficient catalytic activity for oxygen reduction reaction (ORR). In this work, the in-situ growth of NiCoP on MXene nanosheets (MXene@NiCoP) is reported. The presence of MXene nanosheets accelerates electron transfer and enhances the surface activity of NiCoP. Density functional theory calculations show that MXene@NiCoP possesses the advantages of a low overpotential and high OH* adsorption energy during the ORR process. MXene@NiCoP is demonstrated to be a highly active catalyst for ORR with a half-wave potential of 0.71 V vs. RHE. The assembled single-chamber air-cathode microbial fuel cell achieves high electricity generation performance.
NiCoP constructed on a conductive substrate can achieve efficient oxygen reduction reaction (ORR) catalytic activity. Herein, we report the in-situ growth of NiCoP on the surface of an MXene nanosheet (MXene@NiCoP). The MXene nanosheet accelerated the electron transfer and enhanced the surface activity of the NiCoP. Density functional theory calculations indicated that MXene@NiCoP possessed the advantages of a low overpotential and high OH* adsorption energy in the ORR process. MXene@NiCoP proved to be a highly active catalyst for the ORR with a half-wave potential of 0.71 V vs. RHE. The assembled single-chamber air-cathode microbial fuel cell obtained high electricity generation performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available