4.5 Article

Effects of Large Extracellular Vesicles from Kidney Cancer Patients on the Growth and Environment of Renal Cell Carcinoma Xenografts in a Mouse Model

Journal

CURRENT ISSUES IN MOLECULAR BIOLOGY
Volume 45, Issue 3, Pages 2491-2504

Publisher

MDPI
DOI: 10.3390/cimb45030163

Keywords

cancer; renal cancer; large extracellular vesicle; tumor growth; angiogenesis; peritumoral environment; xenograft; mouse model

Ask authors/readers for more resources

lEVs derived from kidney cancer patients may promote tumor growth and cancer progression, as demonstrated in a mouse model.
Plasma membrane-derived vesicles, also referred to as large extracellular vesicles (lEVs), are implicated in several pathophysiological situations, including cancer. However, to date, no studies have evaluated the effects of lEVs isolated from patients with renal cancer on the development of their tumors. In this study, we investigated the effects of three types of lEVs on the growth and peritumoral environment of xenograft clear cell renal cell carcinoma in a mouse model. Xenograft cancer cells were derived from patients' nephrectomy specimens. Three types of lEVs were obtained from pre-nephrectomy patient blood (cEV), the supernatant of primary cancer cell culture (sEV) and from blood from individuals with no medical history of cancer (iEV). Xenograft volume was measured after nine weeks of growth. Xenografts were then removed, and the expression of CD31 and Ki67 were evaluated. We also measured the expression of MMP2 and Ca9 in the native mouse kidney. lEVs from kidney cancer patients (cEV and sEV) tend to increase the size of xenografts, a factor that is related to an increase in vascularization and tumor cell proliferation. cEV also altered organs that were distant from the xenograft. These results suggest that lEVs in cancer patients are involved in both tumor growth and cancer progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available