4.8 Review

Inorganic non-carbon supported Pt catalysts and synergetic effects for oxygen reduction reaction

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 16, Issue 5, Pages 1838-1869

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ee03642h

Keywords

-

Ask authors/readers for more resources

Oxygen reduction reaction (ORR) is the rate-determining step in fuel cells and metal-air batteries. Pt-based catalysts, especially Pt/C catalysts, are the most promising electrode materials. However, carbon corrosion and Pt deterioration limit their performance. Non-carbon supports can improve stability and catalytic activity by avoiding direct contact between Pt and carbon materials. Metal oxides show excellent stability but lack electrical conductivity, while metal carbides and nitrides possess both stability and conductivity. This review summarizes the applications, mechanisms, and properties of non-carbon supported Pt catalysts in ORR, with emphasis on anchoring and synergetic effects.
Oxygen reduction reaction (ORR) is regarded as the rate-determining step in a fuel cell or a metal-air battery because of the kinetically retarded four-electron process. Among the substantial types of catalysts developed for decades, Pt-based catalysts are almost still the most promising electrode materials with outstanding comprehensive performance and commercial potential. For the widely used Pt/C catalysts, the rapid degradation of performance in ORR tests exposed serious problems due to severe carbon corrosion and Pt deterioration. Non-carbon supports can avoid the direct connection between Pt and carbon materials, resulting in reduction (or elimination) of carbon oxidative dissolution and stabilization of Pt nanoparticles. More importantly, non-carbon supports for Pt-based catalysts may bring favorable anchoring and synergetic effects, which have been widely proved to enhance the durability and catalytic activity. In this review, the inorganic non-carbon support materials are classified as metal oxides, carbides, nitrides, and other metal compounds. Among them, the metal oxide supports manifest excellent stability during the ORR process but may lack electrical conductivity, while metal carbides and nitrides possess both high stability and high electrical conductivity in suitable electrolytes. We aim to summarize the applications of non-carbon supported Pt catalysts in ORR, the relevant mechanisms and the properties of the hybrid catalysts, with emphasis on the anchoring and synergetic effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available