4.7 Article

Contribution of the ventral pouch in the production of mouse ultrasonic vocalizations

Journal

PHYSICAL REVIEW E
Volume 107, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.024412

Keywords

-

Ask authors/readers for more resources

The role of the laryngeal cavity and the alar edge in mouse ultrasonic vocalizations has been studied using simulations, and evidence supporting their importance in call characteristics has been found.
Mouse ultrasonic vocalizations (USVs) are of communicative significance and can serve as one of the major tools for behavioral phenotyping in mouse models of neurological disorders with social communication deficits. Understanding and identifying the mechanisms and role of laryngeal structures in generating USVs is crucial to understanding neural control of its production, which is likely dysfunctional in communication disorders. Although mouse USV production is accepted to be a whistle-based phenomenon, the class of whistle is debatable. Contradictory accounts exist on the role of a specific rodent intralaryngeal structure-the ventral pouch (VP), an air-sac-like cavity, and its cartilaginous edge. Also, inconsistencies in the spectral content of fictive USVs and real USVs in models without the VP points us to re-examine the role of the VP. We use an idealized structure, based on previous studies, to simulate a two-dimensional model of the mouse vocalization apparatus with the VP and without the VP. Our simulations were performed using COMSOL Multiphysics to examine characteristics of vocalizations beyond the peak frequency (fp), like pitch jumps, harmonics, and frequency modulations, important in context-specific USVs. We successfully reproduced some of the crucial aspects of mouse USVs mentioned above, as observed through the spectrograms of simulated fictive USVs. Conclusions about the lack of a role of the mouse VP were previously made in studies primarily examining fp. We investigated the impact of the intralaryngeal cavity and the alar edge on the simulated USV features beyond fp. For the same combinations of parameters, removing the ventral pouch resulted in an alteration of the call characteristics, dramatically removing the variety of calls observed otherwise. Our results thus provide evidence supporting the hole-edge mechanism and the possible role of the VP in mouse USV production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available