4.6 Article

Mapping quantum Hall edge states in graphene by scanning tunneling microscopy

Journal

PHYSICAL REVIEW B
Volume 107, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.115426

Keywords

-

Ask authors/readers for more resources

Researchers used scanning tunneling microscopy to investigate the quantum Hall edge states of monolayer graphene and compared the results with theoretical calculations. They found that a proper choice of gate voltage allowed for accurate mapping of the edge state pattern, and observed extended compressible regions, the antinodal structure of edge states, and their meandering along the lateral interface.
Quantum Hall edge states are the paradigmatic example of bulk-boundary correspondence. They are prone to intricate reconstructions calling for their detailed investigation at high spatial resolution. Here, we map quantum Hall edge states of monolayer graphene at a magnetic field of 7 T with scanning tunneling microscopy. Our graphene sample features a gate-tunable lateral interface between areas of different filling factor. We compare the results with detailed tight-binding calculations, quantitatively accounting for the perturbation by the tip-induced quantum dot. We find that an adequate choice of gate voltage allows for mapping the edge state pattern with little perturbation. We observe extended compressible regions, the antinodal structure of edge states, and their meandering along the lateral interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available