4.6 Article

Isospin- and momentum-polarized orders in bilayer graphene

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene

Haoxin Zhou et al.

Summary: Spin-polarized superconductivity is observed in Bernal bilayer graphene under a large applied perpendicular electric field. Electrostatic gate tuning leads to transitions between electronic phases with different polarizations in the spin space. A transition to a superconducting state is observed at a finite magnetic field, and the critical temperature is consistent with a spin-triplet order parameter.

SCIENCE (2022)

Article Physics, Multidisciplinary

Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field

Sergio C. de la Barrera et al.

Summary: This study demonstrates the existence of a cascade of symmetry-broken states with spontaneous spin and valley isospin ordering in bilayer graphene at zero magnetic field. These states are intrinsic to natural graphene bilayers and can be explored by independently tuning the carrier density and electric displacement field.

NATURE PHYSICS (2022)

Article Multidisciplinary Sciences

Quantum cascade of correlated phases in trigonally warped bilayer graphene

Anna M. Seiler et al.

Summary: This study reports the observation of a cascade of correlated phases in Bernal bilayer graphene, including Stoner ferromagnets and a topologically non-trivial crystal, providing new possibilities for studying strongly correlated electrons in a simple system.

NATURE (2022)

Article Materials Science, Multidisciplinary

Acoustic-phonon-mediated superconductivity in Bernal bilayer graphene

Yang-Zhi Chou et al.

Summary: This article presents a systematic theory of acoustic-phonon-mediated superconductivity that incorporates Coulomb repulsion and explains recent experiments in Bernal bilayer graphene. The theory predicts that s-wave spin-singlet and f-wave spin-triplet pairings are degenerate and dominant. The results indicate that the observed spin-triplet superconductivity in Bernal bilayer graphene arises from acoustic phonons.

PHYSICAL REVIEW B (2022)

Article Multidisciplinary Sciences

Correlation-driven topological phases in magic-angle twisted bilayer graphene

Youngjoon Choi et al.

Summary: Magic-angle twisted bilayer graphene (MATBG) exhibits a variety of correlated phenomena, and new techniques introduced can determine the topological phases that emerge in MATBG in a finite magnetic field. These topological phases form only in a specific range of twist angles and are influenced by strong electronic interactions.

NATURE (2021)

Article Physics, Multidisciplinary

Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene

Andrew T. Pierce et al.

Summary: The discovery of unexpected incompressible states in MATBG, with Chern numbers incompatible with the simple sequential band filling assumption, can be understood as a consequence of broken translation symmetry that doubles the moire unit cell and splits each flavour band in two. These unusual incompressible phases expand the known phase diagram of MATBG and shed light on the close competition between different correlated phases in the system.

NATURE PHYSICS (2021)

Article Multidisciplinary Sciences

Entropic evidence for a Pomeranchuk effect in magic-angle graphene

Asaf Rozen et al.

Summary: The study reveals a transition from a low-entropy electronic liquid to a high-entropy correlated state in magic-angle twisted bilayer graphene under the influence of electron density, temperature, and magnetic field. The correlated state demonstrates a unique combination of properties associated with itinerant electrons and localized moments, with distinct energy scales for different characteristics. The hybrid nature of the correlated state and the separation of energy scales have significant implications for the thermodynamic and transport properties of twisted bilayer graphene.

NATURE (2021)

Article Multidisciplinary Sciences

Isospin Pomeranchuk effect in twisted bilayer graphene

Yu Saito et al.

Summary: The study explores the finite-temperature dynamics of spin and valley isospins in magic-angle twisted bilayer graphene, revealing a resistivity peak at high temperatures near a superlattice filling factor of -1, suggesting a Pomeranchuk-type mechanism. The data indicate the presence of a finite-field magnetic phase transition and a small isospin stiffness in the system.

NATURE (2021)

Article Multidisciplinary Sciences

Nematicity and competing orders in superconducting magic-angle graphene

Yuan Cao et al.

Summary: In magic-angle twisted bilayer graphene, intertwined phases with broken rotational symmetry have been identified, showing strong thermodynamic anisotropy and appearing above the underdoped region of the superconducting dome. A reduction in critical temperature is observed when it intersects with the superconducting dome, with the superconducting state exhibiting anisotropic response to in-plane magnetic fields, suggesting nematic ordering plays a significant role in the low-temperature phases of magic-angle TBG.

SCIENCE (2021)

Article Multidisciplinary Sciences

Half- and quarter-metals in rhombohedral trilayer graphene

Haoxin Zhou et al.

Summary: In this study, we demonstrate the spontaneous ferromagnetic polarization in rhombohedral trilayer graphene driven by gate-tuned van Hove singularities. Through capacitance and transport measurements, a cascade of transitions tuned to density and electronic displacement field are observed. The results show that rhombohedral graphene is an ideal platform for controlled tests of many-body theory, revealing the fundamentally itinerant nature of magnetism in moire materials.

NATURE (2021)

Article Multidisciplinary Sciences

Imaging orbital ferromagnetism in a moire Chern insulator

C. L. Tschirhart et al.

Summary: Researchers have found that electrons in moire flat band systems can break time-reversal symmetry, leading to a quantized anomalous Hall effect, with magnetism primarily orbital in nature. The study also reveals a significant change in magnetization as the chemical potential crosses the quantum anomalous Hall gap, consistent with the expected contribution of chiral edge states to the magnetization in an orbital Chern insulator. Additionally, mapping the spatial evolution of field-driven magnetic reversal shows reproducible micrometer-scale domains pinned to structural disorder.

SCIENCE (2021)

Article Physics, Multidisciplinary

Nematic topological semimetal and insulator in magic-angle bilayer graphene at charge neutrality

Shang Liu et al.

Summary: We report a fully self-consistent Hartree-Fock calculation of the interaction effects on the moire flat bands of twisted bilayer graphene, assuming valley U(1) symmetry is respected. Three types of self-consistent solutions were found, including insulators breaking C2T symmetry, spin/valley-polarized insulators, and semimetals breaking rotation C-3 symmetry. The relative stability of these states can be tuned by weak strains that break C-3 rotation.

PHYSICAL REVIEW RESEARCH (2021)

Article Physics, Multidisciplinary

Collective Excitations of Quantum Anomalous Hall Ferromagnets in Twisted Bilayer Graphene

Fengcheng Wu et al.

PHYSICAL REVIEW LETTERS (2020)

Article Physics, Multidisciplinary

Nature of the Correlated Insulator States in Twisted Bilayer Graphene

Ming Xie et al.

PHYSICAL REVIEW LETTERS (2020)

Article Multidisciplinary Sciences

Intrinsic quantized anomalous Hall effect in a moire heterostructure

M. Serlin et al.

SCIENCE (2020)

Article Multidisciplinary Sciences

Cascade of phase transitions and Dirac revivals in magic-angle graphene

U. Zondiner et al.

NATURE (2020)

Article Materials Science, Multidisciplinary

Ferromagnetism and superconductivity in twisted double bilayer graphene

Fengcheng Wu et al.

PHYSICAL REVIEW B (2020)

Article Chemistry, Multidisciplinary

Modern theory of orbital magnetic moment in solids

F. Aryasetiawan et al.

JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS (2019)

Article Multidisciplinary Sciences

Maximized electron interactions at the magic angle in twisted bilayer graphene

Alexander Kerelsky et al.

NATURE (2019)

Article Multidisciplinary Sciences

Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene

Yuhang Jiang et al.

NATURE (2019)

Article Physics, Multidisciplinary

Ferromagnetic Mott state in Twisted Graphene Bilayers at the Magic Angle

Kangjun Seo et al.

PHYSICAL REVIEW LETTERS (2019)

Article Physics, Multidisciplinary

Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands

Jian Kang et al.

PHYSICAL REVIEW LETTERS (2019)

Article Multidisciplinary Sciences

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

Aaron L. Sharpe et al.

SCIENCE (2019)

Article Physics, Multidisciplinary

Electronic correlations in twisted bilayer graphene near the magic angle

Youngjoon Choi et al.

NATURE PHYSICS (2019)

Article Materials Science, Multidisciplinary

Chiral twist on the high-Tc phase diagram in moire heterostructures

Yu-Ping Lin et al.

PHYSICAL REVIEW B (2019)

Article Materials Science, Multidisciplinary

Nematic superconductivity stabilized by density wave fluctuations: Possible application to twisted bilayer graphene

Vladyslav Kozii et al.

PHYSICAL REVIEW B (2019)

Article Multidisciplinary Sciences

Unconventional superconductivity in magic-angle graphene superlattices

Yuan Cao et al.

NATURE (2018)

Article Physics, Multidisciplinary

Topological Superconductivity in Twisted Multilayer Graphene

Cenke Xu et al.

PHYSICAL REVIEW LETTERS (2018)

Article Multidisciplinary Sciences

Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers

Francisco Guinea et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2018)

Article Physics, Multidisciplinary

Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene

Hiroki Isobe et al.

PHYSICAL REVIEW X (2018)

Article Materials Science, Multidisciplinary

Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions

Masayuki Ochi et al.

PHYSICAL REVIEW B (2018)

Article Materials Science, Multidisciplinary

Phases of a phenomenological model of twisted bilayer graphene

J. F. Dodaro et al.

PHYSICAL REVIEW B (2018)

Article Materials Science, Multidisciplinary

Persistent current states in bilayer graphene

Jeil Jung et al.

PHYSICAL REVIEW B (2015)

Article Materials Science, Multidisciplinary

Quantum multicriticality in bilayer graphene with a tunable energy gap

Robert E. Throckmorton et al.

PHYSICAL REVIEW B (2014)

Review Physics, Multidisciplinary

The electronic properties of bilayer graphene

Edward McCann et al.

REPORTS ON PROGRESS IN PHYSICS (2013)

Article Nanoscience & Nanotechnology

Transport spectroscopy of symmetry-broken insulating states in bilayer graphene

J. Velasco et al.

NATURE NANOTECHNOLOGY (2012)

Article Materials Science, Multidisciplinary

Electronic multicriticality in bilayer graphene

Vladimir Cvetkovic et al.

PHYSICAL REVIEW B (2012)

Article Multidisciplinary Sciences

Moire bands in twisted double-layer graphene

Rafi Bistritzer et al.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2011)

Article Multidisciplinary Sciences

Interaction-Driven Spectrum Reconstruction in Bilayer Graphene

A. S. Mayorov et al.

SCIENCE (2011)

Article Physics, Condensed Matter

Electronic properties of a biased graphene bilayer

Eduardo V. Castro et al.

JOURNAL OF PHYSICS-CONDENSED MATTER (2010)

Article Materials Science, Multidisciplinary

Commensuration and interlayer coherence in twisted bilayer graphene

E. J. Mele

PHYSICAL REVIEW B (2010)

Article Materials Science, Multidisciplinary

Flat bands in slightly twisted bilayer graphene: Tight-binding calculations

E. Suarez Morell et al.

PHYSICAL REVIEW B (2010)

Article Physics, Multidisciplinary

Berry phase effects on electronic properties

Di Xiao et al.

REVIEWS OF MODERN PHYSICS (2010)

Article Physics, Condensed Matter

First-order ferromagnetic phase transition in the low electronic density regime of a biased graphene bilayer

T. Stauber et al.

JOURNAL OF PHYSICS-CONDENSED MATTER (2008)

Article Materials Science, Multidisciplinary

Pseudospin magnetism in graphene

Hongki Min et al.

PHYSICAL REVIEW B (2008)

Article Physics, Multidisciplinary

Low-density ferromagnetism in biased bilayer graphene

Eduardo V. Castro et al.

PHYSICAL REVIEW LETTERS (2008)

Article Physics, Multidisciplinary

Graphene bilayer with a twist: Electronic structure

J. M. B. Lopes dos Santos et al.

PHYSICAL REVIEW LETTERS (2007)