4.3 Article

Retrotransposon Proliferation Coincident with the Evolution of Dioecy in Asparagus

Journal

G3-GENES GENOMES GENETICS
Volume 6, Issue 9, Pages 2679-2685

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1534/g3.116.030239

Keywords

Asparagus; dioecy; sex chromosomes; transposons; genome size

Funding

  1. National Science Foundation [DEB 0841988]
  2. Division Of Environmental Biology
  3. Direct For Biological Sciences [1501589] Funding Source: National Science Foundation
  4. Division Of Integrative Organismal Systems
  5. Direct For Biological Sciences [0922742] Funding Source: National Science Foundation

Ask authors/readers for more resources

Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus. Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n=2x=20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available