4.3 Article

First Draft Assembly and Annotation of the Genome of a California Endemic Oak Quercus lobata Nee (Fagaceae)

Journal

G3-GENES GENOMES GENETICS
Volume 6, Issue 11, Pages 3485-3495

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1534/g3.116.030411

Keywords

adaptation; annotation; chloroplast; nuclear genome assembly; Quercus; GenPred; Shared Data Resources; Genomic Selection

Funding

  1. UCLA
  2. National Science Foundation [IOS-1444611]
  3. National Institutes of Health [R01-HG006677]

Ask authors/readers for more resources

Oak represents a valuable natural resource across Northern Hemisphere ecosystems, attracting a large research community studying its genetics, ecology, conservation, and management. Here we introduce a draft genome assembly of valley oak (Quercus lobata) using Illumina sequencing of adult leaf tissue of a tree found in an accessible, well-studied, natural southern California population. Our assembly includes a nuclear genome and a complete chloroplast genome, along with annotation of encoded genes. The assembly contains 94,394 scaffolds, totaling 1.17 Gb with 18,512 scaffolds of length 2 kb or longer, with a total length of 1.15 Gb, and a N50 scaffold size of 278,077 kb. The k-mer histograms indicate an diploid genome size of similar to 720-730 Mb, which is smaller than the total length due to high heterozygosity, estimated at 1.25%. A comparison with a recently published European oak (Q. robur) nuclear sequence indicates 93% similarity. The Q. lobata chloroplast genome has 99% identity with another North American oak, Q. rubra. Preliminary annotation yielded an estimate of 61,773 predicted protein-coding genes, of which 71% had similarity to known protein domains. We searched 956 Benchmarking Universal Single-Copy Orthologs, and found 863 complete orthologs, of which 450 were present in. 1 copy. We also examined an earlier version (v0.5) where duplicate haplotypes were removed to discover variants. These additional sources indicate that the predicted gene count in Version 1.0 is overestimated by 37-52%. Nonetheless, this first draft valley oak genome assembly represents a high-quality, well-annotated genome that provides a tool for forest restoration and management practices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available