4.8 Article

Rigid-tough Coupling of the Solid Electrolyte Interphase Towards Long-Life Lithium Metal Batteries

Journal

CHEMSUSCHEM
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.202202334

Keywords

energy storage; in situ polymerization; quasi-solid-state polymer electrolytes; lithium metal batteries; rigid-tough coupling

Ask authors/readers for more resources

A novel functional quasi-solid-state polymer electrolyte is developed by in situ copolymerization of a cyclic carbonate-containing acrylate and a urea-based acrylate monomer in commercial available electrolyte. This design philosophy of building mechanochemically stable solid electrolyte interphase (SEI) provides a good example for realizing advanced lithium metal batteries, promoting the superior cycling performance of LiNi0.6Co0.2Mn0.2O2/Li metal batteries.
Lithium metal batteries are highly pursued for energy storage applications due to superior energy densities. However, fast battery decay accompanied by lithium dendrite growth occurs mainly owing to solid electrolyte interphase (SEI) failure. To address this, a novel functional quasi-solid-state polymer electrolyte is developed through in situ copolymerization of a cyclic carbonate-containing acrylate and a urea-based acrylate monomer in commercial available electrolyte. Based on the rigid-tough coupling design of SEI, anionic polymerization of cyclic carbonate units and reversible hydrogen bonding formed using urea motifs on the polymer matrix can take place at SEI. This mechanically stabilizes SEI and thus helps achieve uniform lithium deposition behaviors and non-dendrite growth. Thus, the superior cycling performance of LiNi0.6Co0.2Mn0.2O2/Li metal batteries is promoted by the formation of compatible SEI. This design philosophy to build mechanochemically stable SEI provides a good example for realizing advanced lithium metal batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available