4.7 Article

Weak-anchoring effects in a thin pinned ridge of nematic liquid crystal

Journal

PHYSICAL REVIEW E
Volume 107, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.034702

Keywords

-

Ask authors/readers for more resources

This study theoretically investigates the weak anchoring effects in a thin two-dimensional pinned static ridge of nematic liquid crystal on a flat solid substrate in a passive gas atmosphere. Numerical investigations reveal five qualitatively different types of energetically preferred solutions, which are supported by experimental results. The study provides insights into the behavior of the director within the ridge and the breaking of anchoring near the contact lines.
A theoretical investigation of weak-anchoring effects in a thin two-dimensional pinned static ridge of nematic liquid crystal resting on a flat solid substrate in an atmosphere of passive gas is performed. Specifically, we solve a reduced version of the general system of governing equations recently derived by Cousins et al. [Proc. R. Soc. A 478, 20210849 (2022)] valid for a symmetric thin ridge under the one-constant approximation of the Frank-Oseen bulk elastic energy with pinned contact lines to determine the shape of the ridge and the behavior of the director within it. Numerical investigations covering a wide range of parameter values indicate that the energetically preferred solutions can be classified in terms of the Jenkins-Barratt-Barbero-Barberi critical thickness into five qualitatively different types of solution. In particular, the theoretical results suggest that anchoring breaking occurs close to the contact lines. The theoretical predictions are supported by the results of physical experiments for a ridge of the nematic 4'-pentyl-4-biphenylcarbonitrile (5CB). In particular, these experiments show that the homeotropic anchoring at the gas-nematic interface is broken close to the contact lines by the stronger rubbed planar anchoring at the nematic-substrate interface. A comparison between the experimental values of and the theoretical predictions for the effective refractive index of the ridge gives a first estimate of the anchoring strength of an interface between air and 5CB to be (9.80 +/- 1.12)x10-6 N m-1 at a of (22 +/- 1.5) degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available