4.7 Article

An organic-inorganic solid-electrolyte interface generated from dichloroisocyanurate electrolyte additive for a stable Zn metal anode in aqueous Zn batteries

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries

Zhoudong Yang et al.

Summary: This study investigates the reversible nature of the sulfur oxidation reaction (SOR) in sulfur-based aqueous batteries (SABs) by activating the elaborate mesocrystal NiS2 (M-NiS2). By utilizing a unique 6e(-) solid-to-solid conversion mechanism, an unprecedented SOR efficiency of ca. 96.0% is achieved. The research reveals the importance of the kinetics and thermodynamics in determining the SOR efficiency, and provides insights for the development of high-energy aqueous batteries.

NATIONAL SCIENCE REVIEW (2023)

Review Chemistry, Multidisciplinary

Design Strategies for High-Energy-Density Aqueous Zinc Batteries

Pengchao Ruan et al.

Summary: This review comprehensively summarizes the rational design strategies of high-energy-density zinc batteries, critically analyzes the positive effects and potential issues of these strategies, and outlines the challenges and perspectives for further development.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Engineering, Environmental

Realizing the leucoemeraldine-emeraldine-pernigraniline redox reactions in polyaniline cathode materials for aqueous zinc-polymer batteries

Wanlong Wu et al.

Summary: By tuning ion activities in electrolyte based on Nernst shift, the redox potential of PANI is effectively shifted within the voltage window, allowing for both redox processes to occur in aqueous zinc batteries. Additionally, inhibition of pernigraniline hydrolysis in concentrated electrolyte ensures long-term stability. Excellent capacity retention and coulombic efficiency are achieved, demonstrating an effective strategy for energy storage with redox couples outside the conventional electrolyte voltage window.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Multidisciplinary

Long-Life Zn Anode Enabled by Low Volume Concentration of a Benign Electrolyte Additive

Yuan Shang et al.

Summary: The researchers propose the use of a benign alcohol molecule propylene glycol as an electrolyte additive to achieve stable cycling of zinc anodes at low concentrations. The effective morphology regulation and inhibition of hydrogen evolution contribute to the significant performance improvement. Ab initio molecular dynamics simulations provide atomistic insights into the concentration-dependent effectiveness of propylene glycol as an electrolyte additive. Excellent full cell cycling with high loading of different positive host materials demonstrates the potential for practical development.

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Engineering, Environmental

Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization

Jiawei Wang et al.

Summary: Low-temperature and high-rate Zn metal batteries (ZMBs) were successfully developed by regulating electrolyte chemistry. By modulating the solvation structure of Zn2+ with a co-solvent electrolyte, the ZMBs showed improved charge transport and stability. This study achieved stable cycling for extended periods at low temperatures, presenting promising applications.

CHEMICAL ENGINEERING JOURNAL (2022)

Article Chemistry, Physical

Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery

Yun Zhong et al.

Summary: In this study, a monosodium glutamate (MSG) electrolyte additive is introduced to reconstruct the Zn anode/electrolyte interface and suppress Zn dendrite growth and H-2 evolution. The adsorbed glutamate anions can selectively inhibit side reactions and promote [Zn(H2O)(6)](2+) desolvation, leading to uniform and stable Zn deposition.

NANO ENERGY (2022)

Article Chemistry, Physical

Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries

Licheng Miao et al.

Summary: This study designs a three-functional ether-based co-solvent to improve the stability of aqueous Zn batteries by decreasing the reactivity of water. The results show that ether co-solvents can reduce the number of coordinated water molecules, interrupt the hydrogen-bonding networks of water, and isolate water adsorption on Zn anodes, thereby reducing water decomposition and stabilizing Zn anodes. Moreover, incorporating multiple ether groups in the ether molecular skeleton intensifies this synergistic effect.

ENERGY STORAGE MATERIALS (2022)

Article Multidisciplinary Sciences

A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries

Zhiguo Hou et al.

Summary: A new solid-to-solid conversion electrochemistry is reported to inhibit dendrite growth of metallic anodes and improve metal utilization, by identifying reversible conversion reactions between sparingly soluble carbonates and their corresponding metals at the electrode/electrolyte interface. This StoS strategy eliminates dendrites and diffusion-limited aggregation, leading to enhanced performance in energy storage systems.

SCIENCE ADVANCES (2022)

Article Engineering, Environmental

A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes

Qinping Jian et al.

Summary: A hierarchical porous framework was developed as a host for Zn anode, addressing issues such as dendrite formation and side reactions during cycling. Experimental and numerical results confirmed that the newly developed host enhances Zn deposition efficiency and cycling stability, outperforming traditional Cu mesh hosts in terms of Coulombic efficiency and cycle life.

CHEMICAL ENGINEERING JOURNAL (2021)

Review Chemistry, Physical

Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries

Zhehan Yi et al.

Summary: Zinc-ion batteries are considered promising candidates for next-generation energy storage systems due to their high safety, resource availability, and environmental friendliness. However, the instability of the Zn metal anode has hindered their reliable deployment, and efforts have been made to overcome this through electrode structure design, interface modification, and electrolyte/separator optimization. Understanding and categorizing these strategies based on their intrinsic mechanisms are important for the development of novel Zn metal anodes for ZIBs.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure

Qing Li et al.

Summary: The study highlights the practical issues that may arise when using Zn foil for studying the stability and dendrite formation behavior of Zn anodes, suggesting that a Zn powder/current collector configuration is more practical. The research also reveals that during the aging process of the Zn-P@Cu electrode, hydrogen forms on the surface of Cu and the Zn-P dissolves, leading to morphological changes, which are attributed to galvanic corrosion between Cu and Zn.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries

Jiawei Wang et al.

Summary: The research summarized above categorizes and reviews strategies to address challenges related to zinc metal anodes for rechargeable aqueous zinc ion batteries. By focusing on electrochemical and chemical reaction principles, the study aims to provide insights into improving the performance of these batteries and explores prospects for the development of zinc metal anodes.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode

Haotian Lu et al.

Summary: This research presents a new strategy of zinc-electrolyte interface charge engineering induced by amino acid additives, leading to highly reversible zinc plating/stripping with improved stability and uniformity of the zinc metal anode. Long-term stable cycling at high and ultra-high current densities has been demonstrated, highlighting the reliable self-adaptive feature of the zinc-electrolyte interface.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Reducing Water Activity by Zeolite Molecular Sieve Membrane for Long-Life Rechargeable Zinc Battery

Huijun Yang et al.

Summary: The zeolite molecular sieve-modified aqueous electrolyte shows reduced water activity and side reactions, leading to improved performance at the electrolyte/electrode interface. This modification results in less hydrogen evolution and corrosion, as well as better cycle life and stability of the battery cells.

ADVANCED MATERIALS (2021)

Article Engineering, Environmental

Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries

Run Xiao et al.

Summary: By accurately controlling the nanopore structure, the aqueous Zn metal electrode can achieve high electrochemical reversibility, showing long-term cycling stability and high Coulombic efficiency, which is more stable than the untreated zinc anode.

CHEMICAL ENGINEERING JOURNAL (2021)

Review Chemistry, Multidisciplinary

Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies

Jiahao Liu et al.

Summary: This article focuses on constructing a theory-to-application methodology for aqueous sulfur-based batteries. Research reveals the complexity in the electrochemistry of aqueous sulfur-based batteries, which poses challenges and potential for future development. Further exploration in both theory and practice is needed for the future development direction.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Dual-Function Electrolyte Additive for Highly Reversible Zn Anode

Shao-Jian Zhang et al.

Summary: The study introduces a simple method using ethylene diamine tetraacetic acid tetrasodium salt (Na(4)EDTA) to suppress the poor reversibility of the Zn anode in aqueous Zn-ion batteries, effectively inhibiting dendrite growth and hydrogen evolution. Additionally, the added EDTA promotes desolvation of Zn, prolonging the electrode lifespan.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Insight into the Critical Role of Surface Hydrophilicity for Dendrite-Free Zinc Metal Anodes

Sung Hyun Park et al.

Summary: The study successfully stabilized zinc (Zn) metal anodes by building a thin and hydrophilic artificial solid electrolyte interphase (SEI) layer, which effectively inhibits parasitic side reactions and zinc dendrite growth, achieving durable cycle stability and showing promise for developing large-scale aqueous zinc-ion batteries (ZIBs).

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase

Shengli Di et al.

Summary: By pre-cycling Zn electrodes in an organic electrolyte, a stable organic-inorganic hybrid SEI layer can be formed on the Zn electrode, effectively reducing dendrite growth and water-induced side reactions in aqueous batteries, and improving the stability and lifespan of Zn electrodes.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Optimizing the sulfonic groups of a polymer to coat the zinc anode for dendrite suppression

Yan Wang et al.

Summary: By designing sulfonated poly-ether-ether-ketone (SPEEK) polymers as a surface coating layer on the zinc anode, dendrite growth has been successfully suppressed, leading to improved cycling performance and overall battery performance.

CHEMICAL COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Enhanced reversibility and electrochemical window of Zn-ion batteries with an acetonitrile/water-in-salt electrolyte

Xueyang Song et al.

Summary: The AWIS hybrid electrolyte successfully increased the lifespan and upper voltage limit of zinc-ion batteries, potentially enhancing the energy and power density of zinc-based batteries for large-scale grid storage.

CHEMICAL COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Highly stable zinc metal anode enabled by oxygen functional groups for advanced Zn-ion supercapacitors

Kangyu Zou et al.

Summary: Konjac glucomannan has been designed to enhance Zn reversibility, with active sites redistributing Zn2+ concentration field to enable uniform Zn deposition and cycling stability in Zn-ion supercapacitors.

CHEMICAL COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries

Longtao Ma et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries

Huijun Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Physical

Zn/MnO2 battery chemistry with dissolution-deposition mechanism

Xun Guo et al.

MATERIALS TODAY ENERGY (2020)

Article Chemistry, Physical

Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries

Huibing He et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Article Chemistry, Multidisciplinary

Joint Charge Storage for High-Rate Aqueous Zinc-Manganese Dioxide Batteries

Yan Jin et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries

Yinxiang Zeng et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Review Chemistry, Multidisciplinary

Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries

Wenjing Lu et al.

CHEMSUSCHEM (2018)

Article Chemistry, Multidisciplinary

A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode

Chong Zhang et al.

CHEMICAL COMMUNICATIONS (2018)