4.6 Article

Fully packed quantum loop model on the square lattice: Phase diagram and application for Rydberg atoms

Journal

PHYSICAL REVIEW B
Volume 107, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.125134

Keywords

-

Ask authors/readers for more resources

In this study, by using the sweeping cluster quantum Monte Carlo method, we reveal the complete ground state phase diagram of the fully packed quantum loop model on the square lattice. We find the emergence of a resonating plaquette phase between the lattice nematic (LN) phase and the staggered phase (SP), separated by a first-order transition and the Rokhsar-Kivelson point. Our renormalization group analysis is fully consistent with the order parameter histogram in Monte Carlo simulations. The realization and implication of our phase diagram in Rydberg experiments are proposed.
The quantum dimer and loop models attract great attention, partially because the fundamental importance in the phases and phase transitions emerging in these prototypical constrained systems, and partially due to their intimate relevance toward the on-going experiments on Rydberg atom arrays in which the blockade mechanism naturally enforces the local constraint. Here we show, by means of the sweeping cluster quantum Monte Carlo method, the complete ground state phase diagram of the fully packed quantum loop model on the square lattice. We find between the lattice nematic (LN) phase with strong dimer attraction and the staggered phase (SP) with strong dimer repulsion, there emerges a resonating plaquette (RP) phase with off-diagonal translational symmetry breaking. Such a quantum phase is separated from the LN via a first order transition and from the SP by the famous Rokhsar-Kivelson point. Our renormalization group analysis reveals the different flow directions, fully consistent with the order parameter histogram in Monte Carlo simulations. The realization and implication of our phase diagram in Rydberg experiments are proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available