4.6 Article

New Artificial Intelligence-Integrated Electromyography-Driven Robot Hand for Upper Extremity Rehabilitation of Patients With Stroke: A Randomized, Controlled Trial

Journal

NEUROREHABILITATION AND NEURAL REPAIR
Volume 37, Issue 5, Pages 298-306

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/15459683231166939

Keywords

rehabilitation; robotics; upper extremity; cerebrovascular disease; hemiparesis

Ask authors/readers for more resources

This study aimed to evaluate the effect of an AI-integrated EMG-driven robot hand on patients with chronic stroke. The results showed significant improvement in motor function and spasticity in patients using the robot, which lasted for 4 weeks. This robot hand may be helpful for upper extremity rehabilitation in stroke patients.
Background. An artificial intelligence (AI)-integrated electromyography (EMG)-driven robot hand was devised for upper extremity (UE) rehabilitation. This robot detects patients' intentions to perform finger extension and flexion based on the EMG activities of 3 forearm muscles. Objective. This study aimed to assess the effect of this robot in patients with chronic stroke. Methods. This was a single-blinded, randomized, controlled trial with a 4-week follow-up period. Twenty patients were assigned to the active (n = 11) and control (n = 9) groups. Patients in the active group received 40 minutes of active finger training with this robot twice a week for 4 weeks. Patients in the control group received passive finger training with the same robot. The Fugl-Meyer assessment of UE motor function (FMA), motor activity log-14 amount of use score (MAL-14 AOU), modified Ashworth scale (MAS), H reflex, and reciprocal inhibition were assessed before, post, and post4 weeks (post-4w) of intervention. Results. FMA was significantly improved at both post (P =.011) and post-4w (P =.021) in the active group. The control group did not show significant improvement in FMA at the post. MAL-14 AOU was improved at the post in the active group (P =.03). In the active group, there were significant improvements in wrist MAS at post (P =.024) and post-4w (P =.026). Conclusions. The AI-integrated EMG-driven robot improved UE motor function and spasticity, which persisted for 4 weeks. This robot hand might be useful for UE rehabilitation of patients with stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available