4.7 Article

Gravitational Discriminative Optimization for Multiview Reconstruction of Free-Form Surface

Journal

IEEE-ASME TRANSACTIONS ON MECHATRONICS
Volume -, Issue -, Pages -

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMECH.2023.3260966

Keywords

Point cloud compression; Optimization; Blades; Surface reconstruction; Solid modeling; Training; Standards; Efficient evaluation; free-form surface reconstruction; global robust method; gravitational distribution; multiview blade registration

Ask authors/readers for more resources

In this article, a novel gravitational discriminative optimization (GDO) method based on a multiview reconstruction framework is proposed for flexible and efficient industrial manufacturing. The method includes a training phase and a reconstruction phase, and demonstrates accurate and robust reconstruction in experiments, outperforming other methods in terms of both accuracy and robustness.
Automatic free-form surface reconstruction enables flexible and efficient industrial manufacturing. However, due to the performance of the 3-D measurement system, accurate and robust reconstruction is quite difficult due to corrupted data, discontinuous scanning, etc. To address these issues, in this article, we propose a novel gravitational discriminative optimization (GDO) method based on a multiview reconstruction framework for free-form blades. Our method consists of a training phase and a reconstruction phase. In the training phase, we introduce a novel gravitational distribution feature that is robust against the perturbations caused by corrupted data to instruct the sequence of update maps (SUM) learning process of GDO. To deal with the low overlap caused by the limited and discontinuous scanning, we propose a sequential scenes-to-model framework. Equipped with the trained SUM, we design the reconstruction phase to perform the blade model reconstruction accurately and robustly by partitioning it into inference with a gravitation map, an adaptive maps scheme to boost convergence, and an iterative closest point refinement. Experiments on both limited scanning-based synthetic data and real scene reconstruction of four blade models with different profiles show that GDO outperforms five other methods in terms of both accuracy and robustness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available