4.2 Article

Observation of deterministic double dissipative-Kerr-soliton generation with avoided mode crossing

Journal

PHYSICAL REVIEW RESEARCH
Volume 5, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.013172

Keywords

-

Ask authors/readers for more resources

Dissipative Kerr solitons (DKSs) in microresonators have greatly developed chip-scale ultra-stable microcomb sources and have been widely applied in fundamental physics. Among them, single DKS, double DKS, and soliton crystal can be identified by the optical spectrum. The double DKS state has recently found its application in microwave photonics due to its two-pulse interference nature. However, the traditional method to generate double DKS yields stochastically relative positions, limiting its application versatility. This work demonstrates a method to deterministically generate double DKSs with fixed relative positions in a 97-GHz Si3N4 microresonator, improving the versatility of double-DKS based applications in microwave photonics.
Dissipative Kerr solitons (DKSs) in microresonators have boosted the development of the chip-scale ultra -stable microcomb sources, and thrived in both fundamental physics and a wide range of applications. Among various DKS states, single DKS, double DKS, and a perfect soliton crystal could be identified simply based on the optical spectrum. Especially, the double DKS state, due to its two-pulse-interference nature, has recently found its own application in microwave photonics, such as reconfigurable rf filters. However, the traditional method to generate double DKS usually yields stochastically relative positions of the DKS in the cavity, which limits the versatility of the application. Here a method to deterministically generate double DKSs with fixed relative positions assisted by the dual-pump driven scheme in a 97-GHz Si3N4 microresonator is demonstrated. Via the dual-pump scheme, not only has the single soliton been repeatably generated, double DKS with deterministic relative positions has also been realized through backward tuning. The effects of pump wavelength tuning and pump power on the relative positions are investigated. A direct bridge between the relative positions and the avoided mode crossing induced modulated cw background is established. This work not only provides insight to DKS dynamics in a dual-pump scheme, but also improves the versatility of double-DKS based applications in microwave photonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available