4.6 Article

Hexagonal boron nitride nanophotonics: a record-breaking material for the ultraviolet and visible spectral ranges

Journal

MATERIALS HORIZONS
Volume 10, Issue 7, Pages 2427-2435

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3mh00215b

Keywords

-

Ask authors/readers for more resources

There is a global trend towards miniaturization and multiwavelength performance of nanophotonic devices. Hexagonal boron nitride (hBN) is a promising material for future nanophotonics due to its inherent anisotropy and prospects of high-quality monocrystal growth with an atomically flat surface.
A global trend towards miniaturization and multiwavelength performance of nanophotonic devices drives research on novel phenomena, such as bound states in the continuum and Mietronics, as well as surveys for high-refractive index and strongly anisotropic materials and metasurfaces. Hexagonal boron nitride (hBN) is one of the promising materials for future nanophotonics owing to its inherent anisotropy and prospects of high-quality monocrystal growth with an atomically flat surface. Here, we present highly accurate optical constants of hBN in the broad wavelength range of 250-1700 nm combining imaging ellipsometry measurements, scanning near-field optical microscopy and first-principles quantum mechanical computations. hBN's high refractive index, up to 2.75 in the ultraviolet (UV) and visible range, broadband birefringence of similar to 0.7, and negligible optical losses make it an outstanding material for UV and visible range photonics. Based on our measurement results, we propose and design novel optical elements: handedness-preserving mirrors and subwavelength waveguides with dimensions of 40 nm operating in the visible and UV ranges, respectively. Remarkably, our results offer a unique opportunity to bridge the size gap between photonics and electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available