4.5 Article

2D MXene Ti3C2Tx Enhanced Plasmonic Absorption in Metasurface for Terahertz Shielding

Journal

CMC-COMPUTERS MATERIALS & CONTINUA
Volume 75, Issue 2, Pages 3453-3464

Publisher

TECH SCIENCE PRESS
DOI: 10.32604/cmc.2023.034704

Keywords

EMI shielding; terahertz; plasmonic absorber; metasurface

Ask authors/readers for more resources

With the advancement of technology, shielding for terahertz (THz) electronic and communication equipment is increasingly important. In this article, a theoretical simulation approach based on finite difference time domain (FDTD) is utilized to study the absorption and shielding characteristics of a two-dimensional (2D) MXene Ti3C2Tx metasurface absorber in the THz band. The proposed metasurface achieves 96% absorption under normal illumination of the incident source and acquires an average of 25 dB shielding at 1 THz bandwidth, with the peak shielding reaching 65 dB. The results show the potential of 2D MXene-based stacked metasurfaces for low-cost devices in THz shielding and sensing applications.
With the advancement of technology, shielding for terahertz (THz) electronic and communication equipment is increasingly important. The metamaterial absorption technique is mostly used to shield electromagnetic interference (EMI) in THz sensing technologies. The most widely used THz metamaterial absorbers suffer from their narrowband properties and the involvement of complex fabrication techniques. Materials with multifunctional properties, such as adjustable conductivity, broad bandwidth, high flexibility, and robustness, are driving future development to meet THz shielding applications. In this article, a theoretical simulation approach based on finite difference time domain (FDTD) is utilized to study the absorption and shielding characteristics of a two-dimensional (2D) MXene Ti3C2Tx metasurface absorber in the THz band. The proposed metamaterial structure is made up of a square-shaped array of MXene that is 50 nm thick and is placed on top of a silicon substrate. The bottom surface of the silicon is metalized with gold to reduce the transmission and ultimately enhance the absorption at 1-3 THz. The symmetric adjacent space between the MXene array results in a widening of bandwidth. The proposed metasurface achieves 96% absorption under normal illumination of the incident source and acquires an average of 25 dB shielding at 1 THz bandwidth, with the peak shielding reaching 65 dB. The results show that 2D MXene-based stacked metasurfaces can be proven in the realization of low-cost devices for THz shielding and sensing applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available