4.6 Article

Electron metasurfaces in graphene

Journal

PHYSICAL REVIEW B
Volume 107, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.155404

Keywords

-

Ask authors/readers for more resources

For electron optics in graphene, the only available physical mechanism has been the propagation effect. However, this results in large-sized electronic components that need to operate at low temperatures. This paper introduces the concept of electron metasurfaces in graphene, which are the electronic counterparts of optical metasurfaces. The metasurfaces allow for the bending and splitting of electron beams, with the functionalities controlled by applied gate biases. These electron metasurfaces can shape the wavefront of electron beams within a short distance at room temperature, enabling the realization of optics-inspired electronic devices that can operate under ambient conditions. The concept of metasurface electron optics also holds promise for applications such as electron metalenses, metasurface holography, and metasurface-based digital coding technology in graphene.
For electron optics in graphene, the propagation effect has so far been the only physical mechanism available. The resulting optics-inspired electronic components are large in size and operate at low temperatures to avoid violating the ballistic transport limits. Here, electron metasurfaces, i.e., electronic counterparts of optical metasurfaces, are introduced for graphene electronics. We theoretically implement various angles of electron beam bending, as well as beam splitting at corresponding angles in the same metasurface with the functionalities switched freely by controlling the applied gate biases. The wavefront of electron beams is shaped within a distance far below the ballistic transport distance at room temperature, allowing for the realization of optics-inspired electronic devices that can operate under ambient conditions. The concept of metasurface electron optics, based on elaborate design of more complex spatial phase patterns, might also open up a promising avenue for achieving more appealing applications such as electron metalenses, metasurface holography, as well as metasurface-based digital coding technology in graphene.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available