4.6 Article

How great is the stabilization of crowded polyphenylbiphenyls by London dispersion?

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 25, Issue 19, Pages 13359-13375

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2cp05085d

Keywords

-

Ask authors/readers for more resources

The molecular energetics and phase behavior of crowded biphenyls were evaluated through experimental and computational methods. It was found that steric crowding leads to weakened interactions between molecules, resulting in decreased stability. Some morphs of the biphenyls were observed to have higher melting points and heat capacities, indicating greater stability at lower temperatures.
Decaphenylbiphenyl (1) and 2,2',4,4',6,6'-hexaphenylbiphenyl (2) are bulky molecules expected to be greatly destabilized by steric crowding. Herein, through a combined experimental and computational approach, we evaluate the molecular energetics of crowded biphenyls. This is complemented by the study of phase equilibria for 1 and 2. Compound 1 shows a rich phase behavior, displaying an unusual interconversion between two polymorphs. Surprisingly, the polymorph with distorted molecules of C-1 symmetry is found to have the highest melting point and to be the one that is preferentially formed. The thermodynamic results also indicate that the polymorph displaying the more regular D-2 molecular geometry has larger heat capacity and is probably the more stable at lower temperatures. The melting and sublimation data clearly reveal the weakening of cohesive forces in crowded biphenyls due to the lower molecular surface area. The experimental quantification of the intramolecular interactions in 1 and 2 indicated, using homodesmotic reactions, a molecular stabilization of about 30 kJ mol(-1). We attribute the origin of this stabilization in both compounds to the existence of two parallel-displaced pMIDLINE HORIZONTAL ELLIPSISp interactions between the ortho-phenyl substituents on each side of the central biphenyl. Computational calculations with dispersion-corrected DFT methods underestimate the stabilization in 1, unless the steric crowding is well balanced in a homodesmotic scheme. This work demonstrates that London dispersion forces are important in crowded aromatic systems, making these molecules considerably more stable than previously thought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available