4.6 Article

Investigating the Electro-Optic Response of Steroid Doped Liquid Crystal Devices

Journal

APPLIED SCIENCES-BASEL
Volume 13, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/app13085054

Keywords

cholesteric liquid crystals; chiral dopants; electro-optics; steroids; synthetic modification

Ask authors/readers for more resources

Nature efficiently produces chiral compounds, making them potential chiral dopants for cholesteric liquid crystal systems. In this study, 10 naturally occurring biomolecules were tested as chiral dopants for CLCs, with progesterone and lithocholic acid derivatives showing promise. Progesterone was highly miscible with nematic liquid crystals and used in responsive liquid crystal devices, while the derivatives of lithocholic acid exhibited blue tuning behavior in polymer stabilized CLCs.
Nature is highly efficient at producing chiral compounds that are enantiomerically pure. The inherent chirality of naturally occurring biomolecules means that many have the potential to be used as chiral dopants for cholesteric liquid crystal (CLC) systems. Though many biomolecules have been identified as chiral dopants, many remain yet to be probed for their ability to function as chiral dopants. Here, 10 naturally occurring biomolecules comprised of steroids and bile acids were tested as chiral dopants for CLCs. Progesterone was identified as having high miscibility with nematic liquid crystals and was used in responsive liquid crystal devices. Progesterone-doped CLC devices were fabricated to exhibit either normal mode or reverse mode switchable behavior. Polymer stabilized CLCs (PSCLC) devices exhibiting dynamic electro-optic red- and blue-tuning behaviors were also fabricated. Furthermore, immiscible lithocholic acid was synthetically modified to afford two derivatives that were miscible at 10 wt. % in nematic liquid crystals. The two lithocholic acid derivatives were used as chiral dopants and incorporated into polymer stabilized CLCs which exhibited blue tuning behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available