4.6 Article

Engine Calibration With Surrogate-Assisted Bilevel Evolutionary Algorithm

Journal

IEEE TRANSACTIONS ON CYBERNETICS
Volume -, Issue -, Pages -

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCYB.2023.3267454

Keywords

Optimization; Engines; Calibration; Computer architecture; Evolutionary computation; Petroleum; Constraint handling; Bilevel architecture; constrained optimization; engine calibration; expensive optimization; surrogate-assisted evolutionary algorithms (SAEAs)

Ask authors/readers for more resources

This article proposes a surrogate-assisted bilevel evolutionary algorithm to solve a real-world engine calibration problem. Principal component analysis is performed to investigate the impact of variables on constraints and to divide decision variables into lower-level and upper-level variables. Computational studies demonstrate that our algorithm is efficient in constraint handling and achieves a smaller fuel consumption value than other calibration methods.
Engine calibration problems are black-box optimization problems which are evaluation costly and most of them are constrained in the objective space. In these problems, decision variables may have different impacts on objectives and constraints, which could be detected by sensitivity analysis. Most existing surrogate-assisted evolutionary algorithms do not analyze variable sensitivity, thus, useless effort may be made on some less sensitive variables. This article proposes a surrogate-assisted bilevel evolutionary algorithm to solve a real-world engine calibration problem. Principal component analysis is performed to investigate the impact of variables on constraints and to divide decision variables into lower-level and upper-level variables. The lower-level aims at optimizing lower-level variables to make candidate solutions feasible, and the upper-level focuses on adjusting upper-level variables to optimize the objective. In addition, an ordinal-regression-based surrogate is adapted to estimate the ordinal landscape of solution feasibility. Computational studies on a gasoline engine model demonstrate that our algorithm is efficient in constraint handling and also achieves a smaller fuel consumption value than other state-of-the-art calibration methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available