4.8 Article

High-Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction

Journal

SMALL STRUCTURES
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1002/sstr.202300012

Keywords

catalysts; high-entropy materials; high-entropy sulfides; oxygen evolution reaction

Ask authors/readers for more resources

High-entropy sulfides (HESs), as a newly developed class of materials, show great potential as efficient electrocatalysts for various reactions. In this study, HESs containing five or six transition metals are synthesized using a one-step mechanochemical process. By comparing the performances and properties of HESs with different compositions and structures with commercial IrO2, it is found that most of the HESs exhibit excellent electrocatalytic performance for the oxygen evolution reaction (OER) under alkaline conditions, outperforming the reference catalyst IrO2.
With respect to efficient use of diminishing or harder to reach energy resources, the catalysis of processes that will otherwise require high overpotentials is a very important application in today's world. As a newly developed class of materials, high-entropy sulfides (HESs) are promising electrocatalysts for a variety of different reactions. In this report, HESs containing five or six transition metals are synthesized in a one-step mechanochemical process. Seven HESs of Pnma (M:S approximate to 1:1) and three Pa-3 (M:S = 1:2) structures are investigated as electrocatalysts for the oxygen evolution reaction (OER). The performances and properties of the HESs with different compositions and structures are compared with each other and with commercial IrO2 as reference material, in terms of OER overpotential, Tafel slope, electrochemically active surface area, ionic conductivity, and durability. The structural and chemical properties of these HESs are determined by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy. Most of the HESs show excellent and promising performance as OER electrocatalysts under alkaline conditions, and outperform the reference OER catalyst IrO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available