4.7 Article

MOF-derived Zn-Co-Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis

Related references

Note: Only part of the references are listed.
Article Nanoscience & Nanotechnology

Co9S8 Nanosheet Coupled Cu2S Nanorod Heterostructure as Efficient Catalyst for Overall Water Splitting

Zehao Zang et al.

Summary: This study presents a novel heterostructure catalyst Co9S8/Cu2S/CF with low overpotentials for water splitting. The strong interfacial interaction promotes water molecule dissociation, achieving efficient alkaline water splitting.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Physical

Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis

Huachuan Sun et al.

Summary: In this study, ultrathin rhodium-doped nickel-iron layered double hydroxide nanosheets were successfully synthesized, demonstrating excellent hydrogen evolution and oxygen evolution performance for advanced overall water splitting. The impressive mass activity in urea electro-oxidation reaction indicates great potential for overcoming the sluggish oxygen evolution reaction.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Multidisciplinary

Laser-Induced Annealing of Metal-Organic Frameworks on Conductive Substrates for Electrochemical Water Splitting

Yu-Jia Tang et al.

Summary: The laser-induced annealing (LIA) strategy can efficiently produce uniform structures and eliminate particle aggregation for metal-organic frameworks (MOFs) used in electrocatalysis under ambient conditions, leading to devices with controllable sizes and good flexibility.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Designing Zn-doped nickel sulfide catalysts with an optimized electronic structure for enhanced hydrogen evolution reaction

Wenjun He et al.

Summary: This study presents the design of Zn-doped Ni3S2 nanosheet arrays to enhance the catalytic performance of the hydrogen evolution reaction. The cation-doping engineering method provides an efficient approach to improve the intrinsic activities of transition-metal sulfides for the development of nonprecious electrocatalysts.

NANOSCALE (2021)

Article Chemistry, Multidisciplinary

In Situ Induction of Strain in Iron Phosphide (FeP2) Catalyst for Enhanced Hydroxide Adsorption and Water Oxidation

Guowei Li et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Review Chemistry, Multidisciplinary

Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction

Bingjun Zhu et al.

SMALL (2020)

Article Multidisciplinary Sciences

In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution

Fabio Dionigi et al.

NATURE COMMUNICATIONS (2020)

Article Chemistry, Multidisciplinary

Optimized Metal Chalcogenides for Boosting Water Splitting

Jie Yin et al.

ADVANCED SCIENCE (2020)

Article Chemistry, Physical

FeOOH-enhanced bifunctionality in Ni3N nanotube arrays for water splitting

Jielun Guan et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2020)

Article Chemistry, Multidisciplinary

Covalent 0D-2D Heterostructuring of Co9S8-MoS2for Enhanced Hydrogen Evolution in All pH Electrolytes

Minkyung Kim et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Physical

Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures

Liuyong Hu et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2020)

Review Chemistry, Multidisciplinary

Metallic nanostructures with low dimensionality for electrochemical water splitting

Leigang Li et al.

CHEMICAL SOCIETY REVIEWS (2020)

Review Chemistry, Multidisciplinary

MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions

Hao-Fan Wang et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Multidisciplinary Sciences

Electrochemical synthesis of nitric acid from air and ammonia through waste utilization

Yuting Wang et al.

NATIONAL SCIENCE REVIEW (2019)

Article Chemistry, Multidisciplinary

Hierarchical Nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a Highly Efficient Electrocatalyst for Overall Water Splitting in a Wide pH Range

Yan Yang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Physical

Foam-like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water-splitting

Feng Du et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2019)

Article Chemistry, Multidisciplinary

A Lattice-Oxygen-Involved Reaction Pathway to Boost Urea Oxidation

Longsheng Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation

Yan Duan et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis

Huajie Xu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Heteroporous MoS2/Ni3S2 towards superior electrocatalytic overall urea splitting

Fang Li et al.

CHEMICAL COMMUNICATIONS (2018)

Article Chemistry, Multidisciplinary

Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis

Zi-You Yu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Efficient Hydrogen Evolution on Cu Nanodots-Decorated Ni3S2 Nanotubes by Optimizing Atomic Hydrogen Adsorption and Desorption

Jin-Xian Feng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Chemistry, Multidisciplinary

Necklace-like Multishelled Hollow Spinel Oxides with Oxygen Vacancies for Efficient Water Electrolysis

Shengjie Peng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Chemistry, Multidisciplinary

In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction

Yanyong Wang et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Review Multidisciplinary Sciences

Combining theory and experiment in electrocatalysis: Insights into materials design

Zhi Wei Seh et al.

SCIENCE (2017)

Article Chemistry, Multidisciplinary

Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity

Jian Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells

Xiaojiao Zhu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Article Chemistry, Multidisciplinary

A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization

Bo You et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Chemistry, Multidisciplinary

NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting

Chun Tang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2015)

Review Chemistry, Multidisciplinary

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

Yan Jiao et al.

CHEMICAL SOCIETY REVIEWS (2015)

Article Chemistry, Multidisciplinary

High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting

Liang-Liang Feng et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Chemistry, Multidisciplinary

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices

Charles C. L. McCrory et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Multidisciplinary Sciences

Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

Tatsuya Shinagawa et al.

SCIENTIFIC REPORTS (2015)

Article Chemistry, Multidisciplinary

Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction

Peng Xiao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2014)

Review Multidisciplinary Sciences

Opportunities and challenges for a sustainable energy future

Steven Chu et al.

NATURE (2012)