4.6 Article

Bioinspired Hemostatic Strategy via Pulse Ejections for Severe Bleeding Wounds

Journal

RESEARCH
Volume 6, Issue -, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/research.0150

Keywords

-

Ask authors/readers for more resources

Inspired by bombardier beetles, a shape-memory aerogel with an aligned microchannel structure was developed for efficient hemostasis during emergency trauma. The aerogel exhibited remarkable hemostatic performance in severely bleeding wounds in a swine model and showed good degradability and biocompatibility, suggesting its potential for clinical application in humans.
Efficient hemostasis during emergency trauma with massive bleeding remains a critical challenge in prehospital settings. Thus, multiple hemostatic strategies are critical for treating large bleeding wounds. In this study, inspired by bombardier beetles to eject toxic spray for defense, a shape-memory aerogel with an aligned microchannel structure was proposed, employing thrombin-carrying microparticles loaded as a built-in engine to generate pulse ejections for enhanced drug permeation. Bioinspired aerogels, after contact with blood, can rapidly expand inside the wound, offering robust physical barrier blocking, sealing the bleeding wound, and generating a spontaneous local chemical reaction causing an explosive-like generation of CO2 microbubbles, which provide propulsion thrust to accelerate burst ejection from arrays of microchannels for deeper and faster drug diffusion. The ejection behavior, drug release kinetics, and permeation capacity were evaluated using a theoretical model and experimentally demonstrated. This novel aerogel showed remarkable hemostatic performance in severely bleeding wounds in a swine model and demonstrated good degradability and biocompatibility, displaying great potential for clinical application in humans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available